OpenlL Tablets BRMS Reference Guide

Preface
This preface is an introduction to the OpenL Tablets Reference Guide. The following topics are included in this preface:

* Audience
e Related Information

¢ Typographic Conventions

Audience

This guide is mainly intended for analysts and developers who create applications employing the table based decision
making mechanisms offered by OpenlL Tablets technology. However, other users can also benefit from this guide by
learning the basic OpenL Tablets concepts described herein.

Basic knowledge of Excel® is required to use this guide effectively. Basic knowledge of Java is required to follow the
development related sections.

Related Information

The following table lists sources of information related to contents of this guide:

Title Description

. . Document describing OpenL Studio, a web application for managing OpenlL Tablets projects
OpenlL Studio Guide
through a web browser.

https://openl- . .
Openl Tablets open source project website.

tablets.org/

Typographic Conventions

The following styles and conventions are used in this guide:

Convention Description

values, field names, menu commands,

Bold menus, option buttons, perspectives, tabs, tooltip labels, tree elements, views, and windows.
Represents keys, such as F9 or CTRL+A.

Represents a term the first time it is defined.

Represents user interface items such as check boxes, command buttons, dialog boxes, drop-down list

Represents file and directory names, code, system messages, and command-line commands.

Select File >) .)

Save A Represents a command to perform, such as opening the File menu and selecting Save As.
ave As

Italic Represents any information to be entered in a field. Represents documentation titles.

<> Represents placeholder values to be substituted with user specific values.

Hyperlink Represents a hyperlink. Clicking a hyperlink displays the information topic or external source.

Introducing OpenlL Tablets

1/156

https://openldocs.readthedocs.io/en/latest/documentation/guides/webstudio_user_guide
https://openl-tablets.org/

This chapter introduces OpenlL Tablets and describes its main concepts.
The following topics are included in this section:

* What Is Openl Tablets?
® Basic Concepts

® System Overview

¢ Installing OpenlL Tablets
® Tutorials and Examples

What Is OpenlL Tablets?

Openl Tablets is a Business Rules Management System (BRMS) and Business Rules Engine (BRE) based on tables
presented in Excel documents. Using unique concepts, OpenL Tablets facilitates treating business documents containing
business logic specifications as executable source code. Since the format of tables used by OpenL Tablets is familiar to
business users, OpenL Tablets bridges a gap between business users and developers, thus reducing costly enterprise
software development errors and dramatically shortening the software development cycle.

In a very simplified overview, OpenL Tablets can be considered as a table processor that extracts tables from Excel
documents and makes them accessible from software applications.

The major advantages of using OpenL Tablets are as follows:

* Openl Tablets removes the gap between software implementation and business documents, rules, and policies.

® Business rules become transparent to developers.

* Openl Tablets verifies syntax and type errors in all project document data, providing convenient and detailed error
reporting.

® Openl Tablets can directly point to a problem in an Excel document.

* Openl Tablets provides calculation explanation capabilities, enabling expansion of any calculation result by pointing
to source arguments in the original documents.

* Openl Tablets provides cross-indexing and search capabilities within all project documents.

* Openl Tablets provides the ability to create compact and easily readable business rules that become a part of
business documentation.

¢ Knowledge of Java or any other programming language is not required to create business rules with OpenL Tablets.

Openl Tablets supports the and file formats.
Basic Concepts

This section describes the following main OpenL Tablets concepts:

* Rules
¢ Tables
* Projects

Rules

In OpenL Tablets, a rule is a logical statement consisting of conditions and actions. If a rule is called and all its conditions
are true, then the corresponding actions are executed. Basically, a rule is an IF-THEN statement. The following is an
example of a rule expressed in human language:

If a service request costs less than 1,000 dollars and takes less than 8 hours to execute, then the service request must be
approved automatically.

Instead of executing actions, rules can also return data values to the calling program.

2/156

Tables

Basic information OpenL Tablets deals with, such as rules and data, is presented in tables. Tables within one project must
be unique and it is denoted by table name and input parameters. Nevertheless, different versions of the same table can
have the same name and input parameters.

Tables are referenced by calling their names.

Different types of tables serve different purposes. For more information on table types, see Table Types.
Projects

An Openl Tablets project is a container of all resources required for processing rule related information. Usually, a project
contains Excel files, which are called modules of the project, and optionally Java code, library dependencies, and other
components. For more information on projects, see Working with Projects.

There can be situations where OpenL Tablets projects are used in the development environment but not in production,
depending on the technical aspects of a solution.

System Overview

The following diagram displays how OpenL Tablets is used by different types of users.

Business Administrator
user
OpenlL
Studio
Define and maintain, Manage projects,
test and fix rules measure performance
Soluti * : |
Solution Developer
developer Openl Tablets
- project
= =1 Execute rules through
/ wrappers
Client ,
. IDE
application Execute rules through Excel tables .
web services Wark on Openl Tablets
project with Maven

Openl Tablets overview
A typical lifecycle of an OpenL Tablets project is as follows:
1. A business analyst creates an OpenlL Tablets project in OpenL Studio.
2. Optionally, development team may provide the analyst with a project in case of complex configuration.

3. The business analyst creates correctly structured tables in Excel files based on requirements and includes them in the
project.

Typically, this task is performed through Excel or OpenL Studio in a web browser.

4. Business analyst performs unit and integration tests by creating test tables and performance tests on rules through
Openl Studio.

3/156

As a result, fully working rules are created and ready to be used.

5. Development team creates other parts of the solution and employs business rules directly through the OpenL
Tablets engine or remotely through web services.

6. Whenever required, a business user updates or adds new rules to project tables.

Openl Tablets business rules management applications, such as OpenlL Studio, Rules Repository, and OpenL Rule Services,
can be set up to provide self-service environment for business user changes.

Installing OpenL Tablets

Openl Tablets installation instructions are provided in OpenL Tablets Installation Guide > Deploying OpenL Studio. The
development environment is required only for creating OpenL Tablets projects and launching OpenlL Studio or OpenL Rule
Services. If Openl Tablets projects are accessed through OpenlL Studio or web services, no specific software needs to be
installed.

Tutorials and Examples

Openl Tablets provides a number of preconfigured projects developed for new users who want to learn working with
Openl Tablets quickly.

These projects are organized into following groups:

® Tutorials
® Examples

Tutorials

Openl Tablets provides a set of the tutorial projects demonstrating basic OpenL Tablets features starting from very simple
and following with more advanced projects. Files in the tutorial projects contain detailed comments allowing new users to
grasp basic concepts quickly.

To create a tutorial project, proceed as follows:

1. To open Repository Editor, in OpenL Studio, in the top line menu, click the Repository item.

2. Click the Create Project button I:l

3. In the Create Project from window, click the required tutorial name.
4. Click Create to complete.

The project appears in the Projects list of Repository Editor.

4156

https://openldocs.readthedocs.io/en/latest/documentation/guides/installation_guide/#deploying-openl-tablets-webstudio

Create Project from... x

Template Excel Files Zip Archive ‘Workspace

Project a
Template * | Tutorials

Tutorial 1 - Introduction to Decision Tables

Tutorial 2 - Intreduction to Data Tables

Tutorial 3 - More Advanced Decision and Diata Tables
Tutorial 4 - Intreduction to Column Match Tables
Tutorial 5 - Intreduction to TBasic Tables

Tutorial & - Intreduction to Spreadsheet Tables

Tutorial 7 - Intreduction to Table Properties

Project

Mame * Tutorial 1 - Introduc tion to Decizion Tables

Creating tutorial projects
5. In the top line menu, click Rules Editor.

The project is displayed in the Projects list and available for usage. It is highly recommended to start from reading Excel
files for examples and tutorials which provide clear explanations for every step involved.

@ OpenL Siudio EDITOR REPOSITORY ADMIN

Projects () Mare w

Filter by Name)
Total projects: 2

Example 2 - Corporate Rating
Corporate Rating

)) OpenL Tablets Documentation
Tutorial 1 - Introduction to

Decision Tables
Installation Guide

Tutoriall - Intro to Decision

Tables Reference Guide
Developer Guide
WebStudio User Guide

Web Services Usage and Custemization Guide

OpenL Tablets in the Internet

Official Website

Openl Tablets News
Openl Tablets on Twitter
Openi Tablets Forum

Openl Tablets on Sourceforge

© 2014 OpenL Tablets | Report a problem

Tutorial project in the Openl Studio

5/156

Examples

In addition to tutorials, OpenlL Tablets provides several example projects that demonstrate how OpenL Tablets can be used
in various business domains.

To create an example project, follow the steps described in Tutorials, and in the Create Project from dialog, select an
example to explore. When completed, the example appears in the OpenL Studio Rules Editor.

Creating Tables for OpenlL Tablets

This chapter describes how OpenL Tablets processes tables and provides reference information for each table type used in
Openl Tablets.

The following topics are included in this chapter:

* Table Recognition Algorithm
* Naming Conventions

* Table Types

* Table Properties

Table Recognition Algorithm

This section describes an algorithm of how the OpenL Tablets engine looks for supported tables in Excel files. It is
important to build tables according to the requirements of this algorithm; otherwise, the tables are not recognized
correctly.

Openl Tablets utilizes Excel concepts of workbooks and worksheets, which can be represented and maintained in multiple
Excel files. OpenL Tablets does not use any of Excel's formula capabilities though. Any calculations performed in OpenL
Tablets are done using OpenL syntax, which is completely distinct from any formula syntax used by Excel. Excel worksheets
can be named and arranged within one workbook in the order convenient to a user. Each worksheet, in its turn, is
comprised of one or more tables. Workbooks can include tables of different types, each one supporting different
underlying logic.

The general table recognition algorithm is as follows:
1. The engine looks into each spreadsheet and tries to identify logical tables.

Logical tables must be separated by at least one empty row or column or start at the very first row or column. Table
parsing is performed from left to right and from top to bottom. The first populated cell that does not belong to a
previously parsed table becomes the top-left corner of a new logical table.

2. The engine reads text in the top left cell of a recognized logical table to determine its type.
If the top left cell of a table starts with a predefined keyword, such table is recognized as an OpenL Tablets table.

The following are the supported keywords:

Keyword Table type
Constants Constants Table
ColumnMatch Column Match Table
Data Data Table

Datatype Datatype Table
Environment Configuration Table

6 /156

Keyword Table type
Method Method Table
Properties Properties Table
Rules Decision Table
Run Run Table

SimpleLookup

Simple Lookup Table

SimpleRules Simple Rules Table
SmartLookup Smart Lookup Table
SmartRules Smart Rules Table
Spreadsheet Spreadsheet Table
TablePart Table Part

TBasic or Algorithm | TBasic Table

Test Test Table

All tables that do not have any of the preceding keywords in the top left cell are ignored. They can be used as
comments in Excel files.

3. The engine determines the width and height of the table using populated cells as clues.

It is a good practice to merge all cells in the first table row, so the first row explicitly specifies the table width. The first row
is called the table header.

Note: To put a table title before the header row, an empty row must be used between the title and the first row of the

actual table.

Naming Conventions
The following conventions apply to the rule, field, and function names:

* The first character of the name must be Java letter, that is, a Unicode character, underscore, or dollar sign.

* The name must consist of Java letters and Java digits.

A Java digit is a collection of numbers from 0 to 9.

71156

SimpleRules DDuinHnur?dleeragel String coverageConditian)
Factor

24 Hour - Business or Pleasure 1

24 Hour - Pieasure Only 05

SimpleRules Duubli TwentyFourH DurCu:-'-.leragEI String coverageCondition)

Factor
24 Hour - Business or Pleasure 1
24 Hour - Pleasure Only 05
0.8

Encountered ® <INTEGER_LITERAL> 24 " at line 1, column 9.
Was expecting one of;

nya

<IDENTIFIER> ...

Double Z4HourCoverage (String coverageCondition) #

SimpleRules Dnubli 24HourCaverage IString coverageCondition }

Factor
24 Hour - Business or Pleasure
24 Hour - Pieasure Only 05
0&

Examples of correct and incorrect rule table names

Table Types
Openl Tablets supports the following table types:

® Decision Table

¢ Datatype Table

e Data Table

® Test Table

* Run Table

* Method Table

¢ Configuration Table
® Properties Table

® Spreadsheet Table
* TBasic Table

® Column Match Table
¢ Constants Table

* Table Part

Decision Table

A decision table contains a set of rules describing decision situations where the state of a number of conditions
determines execution of a set of actions and returned value. It is a basic table type used in OpenL Tablets decision making.

8/156

SmartRules Double DriverPremium (Driver driver, Double additionalCharge)
Driver Type Driving Expe Premium
o 0 10 S600
Principal
10 40 S550
0 15 S750
Occasional
15 40 $700
Excluded, Non-Driver = NonDriverPremiumByAge (driverType, age)
= 5600 + additionalCharge

Decision table example

The following topics are included in this section:

Decision Table Structure

Decision Table Interpretation

Simple and Smart Rules Tables

Simple and Smart Lookup Tables

External Tables Usage in Smart Decision Tables

Ranges and Arrays in Smart and Simple Decision Tables
Rules Tables

Collecting Results in Decision Table

Local Parameters in Decision Table

Transposed Decision Tables

Representing Values of Different Types

Using Calculations in Table Cells

Referencing Attributes

Calling a Table from Another Table

Using Referents from Return Column Cells

Using Rule Names and Rule Numbers in the Return Column
Using References to Expressions

Decision Table Structure

9/156

An example of a decision table is as follows:

Rules 5iring Hello (Integer hour)

C1 Cc2 RET1
min == hour |hour==max |greeting
Integer min Integer max String greeting

From To Greeting
0 11|Good Morning
12 17| Good Afternoon
18 21|Good Evening
22 23|Good Night

Decision table

The following table describes the full structure of a decision table with the Rules keyword:

Row L.
Mandatory | Description
number
Table header, which has the following pattern: where
1 v is either 'Rules' or 'DT" and is
es
a signature of a table with names and types of the rule and its parameters used to access
the decision table and provide input parameters.

10/156

Row
number

Mandatory

Description

Yes

Row consisting of the following cell types:

- Condition column header

Identifies that the column contains a rule condition and its parameters.

It must start with the “C" character followed by a number or be "MC1” for the 1st column
with merged rows.

If the condition has several parameters, the cell must be merged on all its parameter
columns.

Examples:

- Horizontal condition column header

Identifies that the column contains a horizontal rule condition and its parameter (horizontal
condition can have only one parameter).

It must start with the "HC" character followed by a number. Horizontal conditions are used
in lookup tables only.

Examples:

- Action column header

Identifies that the column contains rule actions. It must start with the “A” character followed
by a number.

Examples:

- Return value column header

Identifies that the column contains values to be returned to the calling program.

A table can have multiple return columns, however, only the first fired non-empty value is
returned.

Example:

All other cells in this row are ignored and can be used as comments.

If a table contains action columns, the engine executes actions for all rules with true
conditions.

If a table has a return column, the engine stops processing rules after the first executed rule
with true conditions and non-empty result found.

11/156

Row

number Mandatory | Description
Row containing cells with expression statements for condition, action, and return value
column headers.
Openl Tablets supports Java grammar enhanced with OpenL Tablets Business Expression
(BEX) grammar features.
For more information on the BEX language, see Appendix A: BEX Language Overview.
In most cases, Openl Tablets Business Expression grammar covers all the variety of
expression statements
and an OpenL user does not need to learn Java syntax.
The code in these cells can use any objects and functions visible to the OpenL Tablets
engine as elsewhere.
For more information on enabling the OpenL Tablets engine to use custom Java packages,
see Configuration Table.
Purpose of each cell in this row depends on the cell above is as follows:
- Condition column header

3 Ves Specifies the logical expression of the condition. It can reference parameters in the table
header and parameters in cells below.
The cell can contain several expressions, but the last expression must return a Boolean
value.
All condition expressions must be true to execute a rule.
- Horizontal condition
The same as Condition column header.
- Action column header
Specifies expression to be executed if all conditions of the rule are true.
The expression can reference parameters in the rule header and parameters in the cells
below.
- Return value column header
Specifies expression used for calculating the return value.
The type of the last expression must match the return value specified in the rule header.
The explicit return statement with the keyword “return” is also supported.
This cell can reference parameters in the rule header and parameters in the cells below.
Row containing parameter definition cells. Each cell in this row specifies the type and name
of parameters in the cells below it.

4 Ves Parameter name must be one word long.
Parameter type must be one of the following: simple data types aggregated data types or
Java classes visible to the engine arrays
of the above types as described in Representing Arrays.
Descriptive column titles. The rule engine does not use them in calculations but they are
intended for business users working with the table.

5 Yes Cells in this row can contain any arbitrary text and be of any layout that does not

correspond to other table parts.
The height of the row is determined by the first cell in the row.

12 /156

Row L.
Mandatory | Description

number
Concrete parameter values. Any cell can contain formula, a mathematical one or a rule call,
6 and v instead of concrete value and calculate the value.
es
below This formula can reference parameters in the rule header and any parameters of condition

columns in the return column.

A user can merge cells of parameter values to substitute multiple single cells when the same value needs to be defined in
these single cells. During rule execution, OpenL Tables unmerges these cells.

The additional Rule column with merged cells is used as the first column when the return value must be a list of values
written in multiple rows of the same column, that is, a vertically arranged array. The Rule column determines the height of
the result value list.

Rules Double [] DriverPremiums (DriverType driverType, Maritals
Rule c2 RET1
maritalStatus

R1 Married i
) §720
Young Driver
RZ Single $
' $300
Senior Driver $
R3 £200
R4 §0
A table with the Rule column as the first column
Results of running DriverPremiums
ID driverType maritalStatus Result
1 Young Driver Married = Colection of Double
70D
720

Result in the vertically arranged array format

The rule column can be defined for rules tables and smart rules tables.
Decision Table Interpretation

Rules inside decision tables are processed one by one in the order they are placed in the table. A rule is executed only
when all its conditions are true. If at least one condition returns false, all other conditions in the same row are ignored.

Blank parameter value cell of the condition is interpreted as a true condition and this condition is ignored for a particular
rule row or column. If the condition column has several parameters, the condition with all its parameter cells blank is
interpreted as a true condition.

Note: As OpenL Tablets returns the first true condition, it is a good practice to list all possible non-blank parameters and
their combinations in case of multiple conditioning first, and then list the blank parameters.

Blank parameter value cell of the return/action column is ignored, the system does not calculate the return/action
expression of the current rule and starts processing the next rule. If the return/action column has several parameters, all

13/156

parameters cells need to be blank to ignore the rule.

If the empty return value is calculated by the expression, the system starts processing the next rule searching for a non-
empty result.

The following example contains empty case interpretation. For Senior Driver, the marital status of the driver does not
matter. Although there is no combination of Senior Driver and Single mode, the result value is 500 as for an empty
marital status value.

.‘r'oung Diriver Married $700
Young Driver Simgle $720
Young Driver Married $300
Young Driver Simgle $300
Senior Driver $500
§0

Results of running DriverPremium

ID driverType maritalstatus Result

I.-'.l

il Senior Driver Single

L

Empty case interpretation in the Decision table

Simple and Smart Rules Tables

Practice shows that most of decision tables have a simple structure: there are conditions for input parameters of a decision
table that check equality of input and condition values, and a return value. Because of this, OpenlL Tablets have simplified
decision table representations. A simplified decision table allows skipping condition and return columns declarations, and
thus the table consists of a header, column titles and condition and return values, and, optionally, properties.

The following topics are included in this section:

* Simple Rules Table
* Smart Rules Table
e Multiple Return Columns in Smart Rules Tables

® Result of Custom Data Type in Smart and Simple Rules Tables

Simple Rules Table

A simplified decision table which has simple conditions for each parameter and a simple return can be easily represented
as a simple rules table.

Unlike smart rules, a simple rule table uses all input parameters to associate them with condition columns in strict order,
determined by simple logic, and using no titles. The value of the first column is compared with the value of the first input
parameter, and so on. The value of the last column (return column) returns as a result. This means that input parameters

must be in the same order as the corresponding condition columns, and the number of inputs must be equal to the
number of conditions.

The simple rules table header format is as follows:

14 /156

The following is an example of a simple rules table header:

SimpleRules InjuryRating VehiclelnjuryRating (BodyType bodyType, AirbagType airbagType, Boolean hasRollBar)

Body Type Airbags Roll Bar Injury Rating
Convertible No Extremely High
Mo Extremely High
Oriver High
Driver&Passenger Moderate
Driver&Passenger&Side Low

Simple rules table example

Note: If a string value contains a comma, the value must be delimited with the backslash (\) separator followed by a
comma. Otherwise, it is treated as an array of string elements as described in Ranges and Arrays in Smart and Simple
Decision Tables.

Restrictions for a simplified decision table are as follows:

¢ Condition values must be of the same type or be an array or range of the same type as corresponding input
parameters.
® Return values must have the type of the return type from the decision table header.

Smart Rules Table

A decision table which has simple conditions for input parameters and a direct return (without expression) can be easily
represented as a smart rules table. Comparing to a simple rules table, a smart rules table type is used more frequently
because smart rules are more flexible and cover wider range of business requirements.

The smart rules table header format is as follows:

DriverPremium

Type of Driver Marital Status Driver Premium
Marri
Young Driver .arrled L]
Single &720
Senior Driver £500
= %600 * factor

Smart rules table with simple return value

Openl Tablets identifies which condition columns correspond to which input parameters by condition titles and parameter
names. First of all, OpenL parses a parameter name and splits it into words, as it interprets a part starting with a capital
letter as a separate word. Then it calculates the percentage of matching words in all columns and selects the column with
the highest percentage of coincidence. If the analysis returns more than one result, OpenL throws an error and requires a
more unique name for the column.

Note: OpenlL Tablets matches input parameters or its fields to the conditions columns using the score. The score is
calculated based on words used in parameter naming. If the particular parameter has the highest score for the particular
condition, matching occurs. If several parameters have the same score, the system displays a warning message
“"Ambiguous matching of column titles to DT columns. Use more appropriate titles.” To overcome this issue and improve
matching, use extended names for conditions.

In case of a custom datatype input, OpenL verifies all fields of the input object to match them separately with appropriate
conditions using field names, in addition to input names, and column titles.

15/156

SmartRules TheftRating ViehicleTheftRating (Vehicle vehicle)

Convertible
45001+
20000 - 45000
<20000

Smart rules table with object-input
Openl is capable of matching abbreviations as well.

During rules execution, the system checks condition and input values on equality or inclusion and returns the result from
the return columns, that is, the last columns identified as the result.

In the example above, the driverType value is compared with values from the Type of Driver column, the maritalStatus
value is compared with the Marital Status column values, and the value from the Driver Premium column is returned as
the result.

Note: To insure the system checks a condition with an appropriate input parameter, the user can "hover” with a mouse
over the column title and see the hint with this information in OpenL Studio.

If a string value of the condition contains a comma, the value must be delimited with the backslash (\) separator followed
by the comma. Otherwise, it is treated as an array of string elements as described in Ranges and Arrays in Smart and
Simple Decision Tables:

trade
precious metals, stones

manufacturing
SEervices
agriculture
tourism

other

IndustryScore
Industry Industry Score
trade
precious metalsh, stones
services, tourism
manufacturing

Pk W B

Comma within a string value in a Smart table

To define a range of values, two columns of the condition can be merged. In this case, the whole condition is interpreted as

SmartRules Integer AgeAdultFactor({Integer age)

Age Factor

Condition: MC1

Expression: min <= age && age < max
Parameters: Integer min, Integer max

16 /156

Using min and max values for a range in the condition column

Special conditions not matching any particular input fields can be used in smart rules tables, for example, for validation
rules definition. Column header for such condition must contain the word ‘true’. If there are other condition headers
containing the word 'true’, the name must be explicitly declared as “Is True?”. All values in such column are expressions or
Boolean values. Such condition can also be used in the smart lookup tables.

?— a -
Condition: MCI True? Validation Message

SRRy | =profit>threshold || profit exceeds thresheld
UL | =crofite=0 no profit

Example of a condition that is a Boolean expression

If there is a horizontal condition of the Boolean type and the condition title is not a merged cell, it is preferable to use the
title is true? instead of true because the title can be interpreted as a horizontal condition and cause wrong compilation.

A smart rule table can contain multiple and compound returns as described in Multiple Return Columns in Smart Rules
Tables and use external tables as described in External Tables Usage in Smart Decision Tables.

Multiple Return Columns in Smart Rules Tables

A smart rules table can contain up to three return columns. If the first return column contains a non-empty result, it is
returned, otherwise, the next return column is scanned until the non-empty result is found or the last return column is
verified.

The following example illustrates a table with multiple return columns.

ez Double QuoteVolume (Plan plan, Double histo

Coverage Type Volume 1 Volume 2

Medical = CalculatedVolume (plan)
= historyPremium,/historyRate = EstimatedVolume (plan)

Example of a smart rules table with multiple return columns

In this example, the QuoteVolume rule has one condition, Coverage Type, and two return columns, Volume 1 and
Volume 2. An example of the test table for this rule table is as follows.

QuoteVolumeTest EEEES

ID Plan History Premium History Rate Volume
= Plan (Plan 1)
1 coverageType = Other 2400 5 " 480
cost = 100
2 + Plan (Plan 1) Empty 3 " 500
3 + Plan (Plan 1) Empty Empty " 500

Example of the test table for a rule table with multiple return columns

17 /156

In the test table, Plan 1 is not of the Medical coverage type, so the second rule line is applied. In the test table, for the first
test case, both History Premium and History Rate are provided, so Volume is calculated as 480 by the rule of Volume 1
column. For the second and third test case, one of inputs is missing, so Volume 1 returns an empty result, and the second
return column calls another rule causing the result of 500 returned.

Note for experienced users: In case of a complex return object, only one compound return consisting of several return
columns is allowed. All other returns can be defined using the formulas, that is, the operator or by calling another
rule that returns the object of the corresponding type. For more information on complex return objects, see Result of
Custom Data Type in Smart and Simple Rules Tables.

Result of Custom Data Type in Smart and Simple Rules Tables

A simplified rules table can return the value of compound type (custom data type) — the whole data object. To accomplish
this, the user must make return column titles close to the corresponding fields of the object so the system can associate
the data from the return columns with the returned object fields correctly. For more information on datatype tables, see
Datatype Table.

In the example below, the rule VehicleDiscount determines the vehicles’s discount type and rate depending on air bags
type and alarm indicator:

VehicleDiscount

Air Bags ? Alarm Discount Type Discount Rate
Driver / percent | 12%
Driver&Pasﬁenger percent ,l' 15%
Yes percent ;’ 11%
flat| / $10

\

Discount
type
rate
- Results of running VehicleDiscount
DiscType
percent
flat ID airbagType hasAlarm Result

1 Driver true = Discount
type = percent

rate = 0.12

Smart rules table with compound return value

Note: To insure the system matches the return column with an appropriate return object field, the user can "hover” over
the column title and see the hint with this information in OpenL Studio.

Note: Return object fields are automatically filled in with input values if the return field name and input field name are
matched.

18/156

Primary Vehicle Car Type Index
Luxury 14
Compact LR]
12

Results of running VehicleIndexCalc

ID wehicle Result

1 = Vehicle (2019 BMW XT) = VehicleProfile
name = 2019 BMW X7 carType = Luxury
carType = Luxury index =14
price = 7000 name = 2019 BEMW X7
year=10 price = 87000

hasAlamm = false

Return object fields automatically filled in with input values

If the rule returns the result of a very complex object (with nested objects inside), then there are several options for
creating column titles:

* titles in one row with names that can be matched to the object fields unambiguously (the previously described
approach) as shown in the example below, rule VehicleDiscount1;

e titles in several rows to define the hierarcy (structure) of the return object; in this case the user can merge cells
associated with fields of a nested object as shown on the example below, rule VehicleDiscount2. Using this option,
merging condition titles is required.

smartRules DiscountSet VehicleDiscountl (tirbagType airbagType, Boolean hasalarm

Air Bags Alarm Min Type Min Rate Max Type Max Rate
Driver percent 12% percent 14%
Driver&Passenger percent 14% percent 16%
Yes percent 10% percent 11%
flat $10 flat $15

smartRules DiscountSet VehicleDiscount2 (tirbagType airbagType, Boolean hasalarm

Air Bags Alarm Min Discount Max Discount
Type Rate Type Rate
Driver percent 12% percent 14%
Driveré&Passenger percent 14% percent 16%
Yes percent 10% percent 11%
flat £10 flat $15
- - Results of running VehicleDiscountl
Datatype DiscountSet
maxDiscount
minDiscount ID airbagType hasalarm Result

1 Dnver&kPassenger true = DiscountSet

= minDiscount = Discount
type = percent
rate = 0.14

= maxDiscount = Discount
type = percent
ratz = 0.16

19/156

Smart rules tables with compound return value
Simple and Smart Lookup Tables

This section introduces lookup tables and includes the following topics:

¢ Understanding Lookup Tables

* Lookup Tables Implementation Details
¢ Simple Lookup Table

® Smart Lookup Table

Understanding Lookup Tables

A lookup table is a special modification of the decision table which simultaneously contains vertical and horizontal
conditions and returns value on crossroads of matching condition values.

That means condition values can appear either on the left of the lookup table or on the top of it. The values on the left are
called vertical and values on the top are called horizontal. Any lookup table must have at least one vertical and at least
one horizontal value.

SimpleLookup Double CarPrice (3tring country, String carBrand, String carModel)
2 BMW Porche
Country 74 sDRIVESSI 74 sDRIVE281 911 Carrera 45 911 Carrera 4
USA $55,150 $47.350 $105.630 $91.,030
Great Britain $57.150 $49.350 $107.630 $93,220
Lithuania $64.400 $57.150 $125.600 $110,030
Belarus $90,400 $83.500 $145.500 $130.500

A lookup table example

Lookup Tables Implementation Details

This section describes internal OpenlL Tablets logic.
At first, the table goes through parsing and validation.

* On parsing, all parts of the table, such as header, columns headers, vertical conditions, horizontal conditions, return
column, and their values, are extracted.
* On validation, OpenL checks if the table structure is proper.

Then Openl Tablets transforms a lookup table into a regular decision table internally and processes it as a regular decision
table.

Simple Lookup Table

A lookup decision table with simple conditions that check equality of an input parameter and a condition value and a
simple return can be easily represented as simple lookup table. This table is similar to simple rules table but has
horizontal conditions. The number of parameters to be associated with horizontal conditions is determined by the height
of the first column title cell.

The simple lookup table header format is as follows:

20/156

The following is an example of a simple lookup table.

Simplelookup Double getCarPriceSimple(Country countryName, String regionMName, CarBrand carBrand, String carMadel)

Region

Country
551,650
552,000
552,450
553,650
553,650
553,650
556,650
556,650
556,650

544,050
$46,550
547,750
547,750
547,750
549,750
548,750
549,750

583,200
§93,200
594,200
555,200
595,200
593,200
593,200
593,200

590,400
590,400
591,400
592,400
593,400
$90,400
590,400
590,400

Simple lookup table example

Smart Lookup Table

A lookup decision table with simple conditions that check equality or inclusion of an input parameter with a condition

value and a direct return (without expression) can be easily represented as a smart lookup table. This table resembles a

smart rules table but has horizontal conditions.

The smart lookup table header format is as follows:

SmartLookup Double DriverPremium (Double factor, DriverType driverType, MaritalStatus

Married Single
Young Driver §700 8720
Senior Driver $500 $500
= %600 * factor

Smart lookup table example

Condition matching algorithm for smart lookup tables is the same as for smart rules tables. For vertical conditions, the

system searches for input parameters suitable by title and then, for horizontal conditions, the system selects input

parameters starting with the first of the rest inputs.

Boolean conditions can be used in the smart lookup tables as column headers. For more information on these conditions,

see Smart Rules Table.

The number of horizontal conditions is determined by the height of the first column title cell. This means that title cells of

the vertical conditions must be merged on all rows which go for horizontal conditions.

The following is an example of a smart lookup table with several horizontal conditions:

SmartLookup Double GarPrice (String region, String country, String brand, String model)
Country Region — M — — Porche
Z4 sDrive35i | Z4 sDrive30i | 911 Carrera 45 | 911 Targa 4

LSA Pacific West £51,650 $45,750

LISA West £52,000 244,050 93,200 90,400
USA Mid Atlantic [$52,450 546,550

GreatBritain England £53,650 47,750 594 200 £91,400
GreatBritain | Wales $53,650 $47,750 $95,200 $092,400
GreatBritain Scotland £53,650 47,750 £96,200 £93 400

21/156

Smart lookup table with several horizontal conditions

Openl Tablets supports titles for horizontal conditions. A horizontal condition title is defined either together with the last
vertical condition header, separated by a slash character, or as a separate column after all vertical conditions.

SmartLookup Double BankLimitIndex1 (Bank bank, RatingGroup bankRatingGroup) [[[[[
Country Code DE, AT, DK, CH, NL, BE RU, UA, KZ
Agency Rating of Agency / Total Assets <8K] [8K .. 100K} [>=100K <IK [[IK..10K) | >=10K |
Moody's Investors Service 1
Standard & Poor's
Moody's Investors Service RILR2 05
Fitch
R1 025 09 1 025 08 1 07
R2 0.15 0.6 09 0.15 0.7 1 0.6
R3 0.07 03 07 0.07 [09 02
R4 0.01 0.15 025 0.01 025 07 0.02
R5 0

Slash character in a red cell indicating that the cell contains condition titles for a vertical condition "Rating of Agency" and a
horizontal condition "Total Assets

SmartLookup Double BankLimitIndex2 (Bank bank, RatingGroup bankRatingGroup)
Country Code DE, AT, DK, CH, NL, BE I RU, UA KZ
Agency Rating of Agency Total Asset <8K [BK..100K)[>=100K | <IK |[[K.10K] >=10K
Moody's Investors Service :
Standard & Poor's
Moody's Tavestors Service . o
Fitch
R1 0.25 0.9 1 0.25 038 1 0.7
R2 0.15 0.6 0.9 0.15 0.7 1 0.6
R3 0.07 03 07 0.07 05 05 02
R4 001 0.15 025 0.01 025 07 0.02
RS 0

Algorithm identifying the third column as horizontal condition titles because the third column values are empty

If the height of the horizontal condition is 1, and there is a vertical condition with an empty column, the horizontal titles
must be started with a slash /.

External Tables Usage in Smart Decision Tables

Conditions, returns, and actions declarations can be separated and stored in specific tables and then used in Smart
Decision Tables via column titles. It allows using the Smart Table type for Decision rule even in case of the complicated
condition or return calculation logic. Another benefit is that condition and return declarations can be reused in several
rules, for example, Conditions table as a template. An example is as follows.

SmartLookup DoubleValue BankLimitindex (Bank bank, String bankRatingGroup, String countryCode, Double totalAssets)
DE, AT, DK, CH, NL, BE RU, UA,KZ

< K] (8K .. 100%) [G ok« 1x] 1k . 10 [= 10k

Bank Rating Group /
Country, Financial Data

Agency

Muoody's Investor

fice| Aaa, Aal, Az2 Az3, Al A2 A3 Baal, Baal Baad

Fitch AAA AA+ AA AA- A=+ A A- BEE+ BERWF o X e Condition: HC?
RN R PYN PR ENSS Lxpression: bankRatingGroup Il Type: Stringll SO Expression: totalAssets
Moody's Investors Sfevice Bal Ba2 Ba3,B1 B2 B3 Ebladkiatt) Type: DoubleRange
Fitch BB-, BB, BB-, B+, B, B-
Standard & Poogls BB-, BB, BB-, B+, B, B- RL R2 08
Rl 025 09 1 |0z o8 1 |07
R 015| 06 09 015 07 1 |os
R3 A EE 07 loo7| 05 09 |02
R4 oot 0is 025 |oo1| o0z | o7 [ooz
RS 0

Conditions BankAgency

Inputs Bank bank, String bankRatingGroup

(bankRatings[select first having ratingAgency == agency]!=null) && (contains(ratingArray, bankRatings[select first having ratingAgency =
Expression agency].rating))
Parameter |RatingA, String[] ratingArray

Title

22156

Using external conditions in a smart rules table

In this example, the first condition definition is taken from a separate Conditions table, an external table, and matched by
column titles Agency and Rating of Agency. In OpenlL Studio, such titles have links leading to the corresponding table.
Other conditions are matched implicitly with input parameters by their names. In OpenL Studio, such titles have hints with
all corresponding information.

Names of external tables have higher priority over input parameters. First of all, the engine checks if an external table with

such name exists and if it is not found, the engine treats the column title as an input parameter. In the preceding example,

Openl Tablets first searches for an external table named Agency and finds it. Otherwise, the engine would treat Agency as
input parameter.

External condition/return/action title must exactly match the title of the condition/return/action in the smart decision table.
Inputs are matched by smart logic analyzing data types and names. Exact name matching is not required.

The external element table structure is as follows:

1. The first row is the header containing the keyword, such as Actions, Conditions, or Returns, and optionally the
name of the table.

2. The first column under the header contains keyword, such as Inputs, Expression, Parameter, and Title.
3. Every column, starting from the second one, represents the element, that is, condition, action, and return definition.

Rows with the corresponding keyword contain the following information in the condition, action, and return
definition rows:

Element Description

Defines input parameters required for expression calculation of the element. It can be common for
Input several expressions when cells are merged.
Input is optional for Returns and Actions.

£) Specifies the logical expression of the element. It must be merged accordingly if an element
xpression
P includes several parameters defined below.

Parameter | Stores parameter definition of the element.

Title Provides a descriptive column title that is later used in the Smart Decision rule.

4. The first column with keywords can be omitted if the default order Inputs — Expression — Parameter - Title is used.
Ranges and Arrays in Smart and Simple Decision Tables

Range and array data types can be used in simplified and smart rules and lookup tables. If a condition is represented as an
array or range, the rule is executed for any value from that array or range. As an example, in the following image, there is
the same Car Price for all regions of Belarus and Great Britain, so, using an array, three rows for each of these countries can
be replaced by a single one as displayed in the following table.

SimpleLookup Double getCarPriceSimpleArrayl{Country countryName, String regionName, CarBrand carBrand, String carModel)

Country Region
$51,650 593,200

552,000 L 593,200
552,450 $93,200
553,650 594,200
556,650 593,200

Simple lookup table with an array

237156

If a string value contains a comma, the value must be delimited with the backslash (\) separator followed by a comma as
illustrated for Driver\, Passenger\, Side in the following example. Otherwise, it is treated as an array of string elements.

SimpleRules String vehiclelnjuryRating(St

Body Type Airbags
Convertible |

.....Driver\,Passenger =
Driver |, Passenaer |, Side

Comma within a string value in a Simple Rule table

The following example explains how to use a range in a simple rules table.

SimpleRules RegionRisk Region (Integer vehicleZip)
ZIP Code Region Risk Value

10001 _. 10027 1

10598

21854

22859

2340 2
23402 . 23409

24603

24700

24701 3

24800

24803 4

25200 10

31200 12

Simple rules table with a Range

OpenL looks through the Condition column, that is, ZIP Code, meets a range, which is not necessarily the first one, and
defines that all the data in the column are IntRange, where Integer is defined in the header, Integer vehicleZip.

Simple and smart rules and smart lookup tables support using arrays of ranges. In the following example, the Z100-Z105,
7107, Z109 condition is a string range array where single elements Z107, Z109 are treated by system as ranges Z107-Z107,
Z109-Z109.

SmartRules String RegionByZip(String Zip)
Zip Code Region Code
Z100-Z105, 2107, 2109 REG1

2106, Z108 REG2
Z110-Z200, 2220-2300 REG3
Z201-72119 REG4

Using arrays of ranges in a table

Note: String ranges are only supported in smart rules tables. For more information on range data types in OpenL Tablets,
see Range Data Types.

Rules Tables

A rules table is a regular decision table with vertical and optional horizontal conditions where the structure of the
condition and return columns is explicitly declared by a user by starting column headers with the characters specific for

241156

each column as described in Decision Table Structure.

By default, each row of the decision table is a separate rule. Even if some cells of condition columns are merged, OpenL
Tablets treats them as unmerged. This is the most common scenario.

Vertical conditions are marked with the Cn and MC1 characters. The MC1 column plays the role of the Rule column in a
table. It determines the height of the result value list. An example is as follows.

Brand Name List of Deductibles
Flood Coverage Brand X 200
10000
Earthquake Coverage Brand ¥ 500
Earthquake Coverage Brand X 0
100
5000
Removal Coverage Brand Z 100

A Decision table with merged condition values

Earthquake Coverage for Brand Y and Brand X has a different list of values, so they are not merged although their first

condition is the same.

Results of running Deductiblelist

ID coverageMName brand Result

= Collection of Double

100

1 Removal Coverage Brand Z

conn
e LN

100

A list of values as a result

The horizontal conditions are marked as HC1, HC2 and so on. Every lookup matrix must start from the HC or RET column.
The first HC or RET column must go after all vertical conditions, such as C, Rule, and comment columns. There can be no
comment column in the horizontal conditions part. The RET section can be placed in any place of the lookup headers row.

HC columns do not have the Titles section.

A lookup table example

25/156

Rules Double CarPrice (Car car, Address billingAddress)
Cl C2 HC1 HC2 RET1
country region brand model
Country 5tring CarBrand 5iring
BEMW

et S Z4 sDnive35i1 | 24 sDnive30i
5A Pacific West $51 650 §£45 750
SA West $52 000 £44 050
SA Mid Atlantic $52 450 £46,550
GreatBritain England $53,650 8§47 750
GreatBritain |Wales $53,650 §47 750
GreatBritain |Scotland $53,650 §47 750

The first cell of column titles must be merged on all rows that contain horizontal condition values. The height of the titles
row is determined by the first cell in the row. For example, see the Country cell in the previous example.

To use multiple column parameters for a condition, return, or action, merge the column header and expression cells. Use
this approach if a condition cannot be presented as a simple AND combination of one-parameter conditions.

|Ru1es Double BankLimitIndex (Bank bank, RatingGroup bankRatingGroup)

=1 =2 HC1 HC2 RET1
contains(ratingArray, bankRatings[select first having ratingAgency ==
agency].rating) bankRatingGroup

RatingGroup][]

countryCode currentFinancialData totalAssets

RatingAgency agency LongTermFating[] ratingArray CountryCod¢ DoubleFange

DE, AT, DK, CH, NL, BE

Bank Rating Group /

Rating of Agen
e e Country, Financial Data = 8K

| [BK.100K) | ==100K <1K

Moody's Investors Service | Aaa, Aal, Aa2, Aa3, Al, A2, A3 Baal, Baa2, Baa3
Fitch AAA AA+ AA AA- A+ A A- BEB+ BBE,BEB- 1
Standard & Poor's AAA AA+ AA AA- A+ A A- BEB+ BBE,BEB-

Moody's Investors Service Bal, BaZ?, Ba3, B1, B2, B3
Fitch BE+, BB, BB-, B+, B, B- R1,R2 03
Standard & Poor's EBE+ BE,EB-,B+ B, B-

Example of the merged column header and expression cells

Any type of decision tables described previously, that is, Simple Rules, Smart Rules, Simple Lookup, and Smart Lookup, can
be transformed into a Rules table with a detailed condition and return column declaration. Rules table is the most generic
but least frequently used table type because other table types have simplified syntax and inbuilt logic satisfying specific
business needs in a more user-friendly way.

Colors identify how values are related to conditions. The same table represented as a decision table is as follows:

Rules Double CarPrice (Car car, Address billingAddress)
Cl Cc2 C3 Cc4a RET1
country region brand model
Country String CarBrand Siring
Country Region Brand Model Price
U5A Pacific West BNMW Z4 gDrive35i $51,650
SA West BMW Z4 sDrive35i $52 000
UsA Mid Atlantic BMW Z4 sDrive35i §52,450
GreatBritain England BMW Z4 s0rive35i £53,650
GreatBritain ~ [Wales BMW Z4 gDrive35i $53,650
GreatBritain |Scotland BMW Z4 sDrive35i $53,650
UsA Pacific West BMW Z4 sDrive30i §45,750
UsA West BMW Z4 sDrive30i 544 050
U5A Mid Atlantic BMW Z4 sDrive30i $46 550
GreatBritain England BMW Z4 sDrive30i $47 750
GreatBritain [Wales BMW Z4 sDrive30i 47,750
GreatBritain [Scotland BMW Z4 sDrive30i 547 750

Lookup table representation as a decision table

Collecting Results in Decision Table

A decision table returns only the first fired, non-empty result in common case. But there are business cases when all rules

in a table must be checked and all results found returned. To do so, use:

¢ Define

keyword right before

as an array.

in the table header for Simple and Smart rule table types;

as the return value column header for a regular decision table type;

In the example below, rule InterestTable returns the list of interest schemes of a particular plan:

26 /156

SI'I'IE!IZF'UlEE@SHSC: Inte 'eezﬁcheme:_]jnterestTable (Flan plan)

_ Period Type Rate Effective Date | Expiration Date

Gold 1st Manth percent 12% 1/1/2016 12/31/2021
Gold 2-12 Months| percent 7% 1/1/2016 12/31/2021
Silver All percent 11% 1/1/2016 12/31/2021
Silver All percent 108 1/1/2013 12/31 /2015
Bronze All flat E75 1/1/2000 12/31/2019

Detatype InterestScheme Results of running InterestTable

string period

String type

Double =iz ID plan Result

Date effDate 1 Gold = Collection of InterestScheme
Date expDate + InterestScheme

= InterestScheme
effDate = 01/D1/2018
period = 2-12 Months
type = percent
rate = 0.07
expDate = 12/31/2021

Collecting results in Smart and Simple rule table

In the following example, rule PriceTable collects car price information for desired specified country and/or "make” of a

car:
Pule@ric&Table (5tring country, String brand)
1 C2
isEmpty(country) or country == ¢ isEmpty(brand) or brand ==b new Price (5C1.c, 5C2.b, price)
String ¢ Siring b Double price

T -

USA BMW £45,000
USA Audi £40,000
Great Britain BMW 548000
Great Britain Audi £42,000
Germany BMW £41,000
Belarus BMW £50,000

271156

Results of running PriceTable

ID country brand Result
1 Great Britain Empty = Caollection of Price
- Price

country = Great Britain

brand = BMW
price = 45000
= Price

country = Great Britain
brand = Audi
price = 42000

Collecting results in regular Decision table

Note for experienced users: Smart and Simple rule tables can return the collection of List, Set, or Collection type. To
define a type of a collection element, use the following syntax: for
example,

Local Parameters in Decision Table

When declaring a decision table, the header must contain the following information:

* column type

* code snippet

¢ declarations of parameters
e titles

Recent experience shows that in 95% of cases, users add very simple logic within code snippet, such as just access to a field
from input parameters. In this case, parameter declaration for a column is useless and can be skipped.

The following topics are included in this section:

¢ Simplified Declarations
* Performance Tips

Simplified Declarations

Casef#1

The following image represents a situation when users must provide an expression and simple equal operation for
condition declaration.

‘Rules String Stqtuslgligil;;lililyi (String status)
e L RET
_lstatus <="Allowed")==check ; ___ elighiity
Boolean check String eliglbllity
is Status Denied? Eligibility
yes Not Eligihle
no Eligible

Decision table requiring an expression and simple equal operation for condition declaration

2817156

This code snippet can be simplified as displayed in the following example.

Rules String StatusEligibility2 (String status)
e : RET1
_status <= "Allowed”

String
Is Status Denled? Eligibllity
Ni= Not Eligible
na Eligible

Simplified decision table

OpenlL Engine creates the required parameter automatically when a user omits parameter declaration with the following

information:

1. The parameter name will be P1, where 1 is index of the parameter.
2. The type of the parameter will be the same as the expression type.

In this example, it will be Boolean.
In the next step, OpenL Tablets will create an appropriate condition evaluator.

Note: The parameter name can be omitted in the situation when the operation for
condition declaration is to be applied. The type of the parameter must be an array of the expression value type.

ci
riskOfWorkWithCorporate

LOW. MIDDLE
MIDDLE

Simplified condition declaration

Case#2

The following example illustrates the Greeting rule with the min <= value and value < max condition expression.

Rules String Gre&tll'lg Leger nour

min <= hour and hour < max greeting + *, World!

From To Greeting

o 12 Good Morning
12 18 Good Afternoon
18 22 Good Evening
22 24 Good Night

The Greeting rule

Instead of the full expression min <= value and value < max, a user can simply use value and OpenlL Tablets

automatically recognizes the full condition.

29/156

Rules String Greeting (Integer hour
hour
From To
0 12 Good Morning
12 18 Good Afternoon
18 22 Good Evening
22 24 Good Night

Simplified Greeting rule
Performance Tips

Time for executing the OpenL Tablets rules heavily depends on complexity of condition expressions. To improve
performance, use simple or smart decision table types and simplified condition declarations.

To speed up rules execution, put simple conditions before more complicated ones. In the following example, simple
condition is located before a more complicated one.

Rules Double BankLimitIndex ank, String bankRatingGroup)

Cl [

(bankRatings[select first having ratingAgency = agency]'=nwull) &

contains(ratingArray, bankRatings[select first having ratingAgency =
bankRatingGroup ag: X

-Tating)

String(] st pen Py String(] ratingArray

Bank Rating Group / Country, Financial

Data Rating of Agency
Moody's Investors Service Aaa, Aal Aa2 Aa3 Al A2 A3 Baal Baa?, Baa3
Fitch AAA AAS AA AA- A+ A A- DBBEB+ BBEB, EBBB-
R1 Standard & Poor's AAM AA+ AA AA- A+ A A BBB+ BBEB, BBB-
Moody's Investors Service Bal, Ba2, Ba3, B1, B2, B3
Fitch BB+, BB, BE-, B+ B,B-
R1,R2 Standard & Poor's BB+, BB, BB-, B+ B, B-

Simple condition location
The main benefit of this approach is performance: expected results are found much faster.

Openl Tablets enables users to create and maintain tests to ensure reliable work of all rules. A business analyst performs
unit and integration tests by creating test tables on rules through OpenlL Studio. As a result, fully working rules are created
and ready to be used.

For test tables, to test the rule table performance, a business analyst uses the Benchmark functionality. For more
information on this functionality, see OpenL Studio Guide.

Transposed Decision Tables

Sometimes decision tables look more convenient in the transposed format where columns become rows and rows become
columns. For example, an initial and transposed version of decision table resembles the following:

30/156

https://openldocs.readthedocs.io/en/latest/documentation/guides/webstudio_user_guide

SmartRules String Hello eder no
Hour Greeting
0 11 Good Morning
12 17 Good Afternoon
18 21 Good Evening
22 23 Good Night
SmartRules String Hello (Integer ho
Hour 0 12 18 22
11 17 21 23
Greeting Good Morning | Good Afternoon| Good Evening Good Night

Transposed decision table

Openl Tablets automatically detects transposed tables and is able to process them correctly.
Representing Values of Different Types

The following sections describe how to present some values - list or range of numbers, dates, logical values — in OpenL
table cells. The following topics are included in this section:

® Representing Arrays

® Representing Date Values

* Representing Boolean Values
* Representing Range Types

Representing Arrays

For all tables that have properties of the type or fields of the array type, arrays can be defined as follows:

¢ horizontally
* vertically
® as comma separated arrays

The first option is to arrange array values horizontally using multiple subcolumns. The following is an example of this
approach:

String[] set

Number Set
1 3 5 7 9
2 4 G a

Arranging array values horizontally

In this example, the contents of the variable for the first rule are and for the second rule,
Values are read from left to right.

The second option is to present parameter values vertically as follows:

31/156

String[] set

Number Set
1
3
1 a
7
9
2
4
2 5
a

Arranging array values vertically

In the second case, the boundaries between rules are determined by the height of the leftmost cell. Therefore, an
additional column must be added to the table to specify boundaries between arrays.

In both cases, empty cells are not added to the array.

The third option is to define an array by separating values by a comma. If the value itself contains a comma, it must be

escaped using back slash symbol “\" by putting it before the comma.
Dizta Pali
propetties category Folicy-Data
Mame Policy Policyd
drivers =driverProfiles3 DOrivers testl testih 4 test2
wehicles =autaoProfiless Vehicles 1965 W Bug
cliertTier Client Tier Elite
clientTerm Client Term Long Term

Array values separated by comma
In this example, the array consists of the following values:

* test
* test3, 4
* test?2

Rules String hello2(String income1, String income2)

C1 Cc2 R
amray1 contains{array2, income2) g
String[] array1 String(] array2 5
Array1 Array2 G
firstValue
secondValue valuel, value2, value3
valug1
value?
value3 singleValue

Array values separated by comma. The second example
In this example, the array consists of the following values:

* valuel
* value2
e value3

Two-dimensional arrays can be used in rules tables, where mixing values and expressions in arrays is allowed. An example
is as follows:

32/156

Rules OfficesByReqgioninfo[] OfficesLocationTable (String inputRegion)
Rule 1 CRET1
inputRegion == region
ar isEmpty (inputRegion)| OfficesByReagioninfo (inputRegion,officesCoordinates, officesList
String region Double[l[) officesCoordinates String[] officesList
Rule Region Offices Location Coordinates List of Offices
407128 -T2.7675 Claims Center
34 0522 -T27675 Palicyholder Support Hub
430543 -T27675 Risk Assessment Division
R1 Mortheast 38.9677 -T4 4162 Relations Department
-4.0333 38,5236 Financial Planning Wing
-5.5502 31.2806 Legal Advisory Branch
-7.8441 33701 Innovation and Research Lab
Rz Southeast -5.2851 334031 Customer Relations Department

Using two-dimensional arrays in a rules table
Representing Date Values

To represent date values in table cells, either Excel format or one of the following format must be used for the text:

. (1SO 8607)
i (Us)

Note: In Excel, inputted text can be treated as a date and converted into Excel's date format. To prevent this, it's necessary
to precede the text with an apostrophe to signify that it should be treated as text. Excel recognizes these values as simple
text and does not automatically convert them into a date format.

The following are valid date value examples:

Openl Tablets recognizes all Excel date formats.
Representing Boolean Values

Openl Tablets supports either Excel Boolean format or the following formats of Boolean values as a text:

* true, yes,y
¢ false, no, n

Openl Tablets recognizes the Excel Boolean value, such as native Excel Boolean value TRUE or FALSE. For more information

on Excel Boolean values, see Excel help.
Representing Range Types

In OpenlL, the following data types are designed to work with ranges:

* IntRange
¢ DoubleRange

For more information on these data types used for ranges, see Range Data Types.

33/156

SimpleRules DriverType DriverAgeType (Gender gender, Integer age)

Male <25 Young Driver
Female <20 Young Driver
Ti+ Senior Driver

Standard Driver

Decision table with IntRange

Note: Be careful with using in a decision table. If there is a range with the border
equals to , for example, , itis not included to the range. This is a known
limitation.

Using Calculations in Table Cells

Openl Tablets can perform mathematical calculations involving method input parameters in table cells. For example,
instead of returning a concrete number, a rule can return a result of a calculation involving one of the input parameters.
The calculation result type must match the type of the cell. When editing tables in Excel files, start the text in the cells
containing calculations with an apostrophe followed by =, and for the tables in OpenL Studio, start the text with =, without
an apostrophe. Excel treats such values as a plain text.

The following decision table demonstrates calculations in table cells.

SimpleRules Integer AMPmMT024 (Integer ampmHr, String an
AM/PM hour AM or PM 24 hour
12 AM o
1-11 AM =ampmHr
12 PM 12
1-11 PM =ampmHr+12

Decision table with calculations

The table transforms a twelve hour time format into a twenty four hour time format. The column contains two cells
that perform calculations with the input parameter

Calculations use regular Java syntax, similar to the one used in conditions and actions.

Note: Excel formulas are not supported by OpenL Tablets. They are used as pre-calculated values.
Referencing Attributes

To address an attribute of an object in a rule, use the following syntaxes:

® <object name>.<attribute name>

Spreadsheet SpreadsheetResult CoverageRateCalculation | Coverage coverage, Date rateEffectiveDate, BenefitStructure coreCoverageBenefitStructure)
Step Formula

CoverageType = coverageType

ContributionType I: fundingStructure_contributionType |

PricingAgeMethod = pricingAgeMethod

ParticipantContributionPercent = fundingStructure_participantContributionPercent

SponsorPaymentMode = fundingStructure.sponsorPaymentMode

Defining an object attribute

® <attribute name> (<object name>)

34 /156

Spreadsheet SpreadsheetResult ExpenseCalculation (Policy policy)
Step Formula
PolicylD = policylD
CommissionPct = round { CommissionPct { expense), 4)
OverridePct = pverridePct (expense)
AdminFeePct = adminFeePct (expense)
UwAdjustmentPct = uywAdjustmentPct { expense)
Commissions = $CommissionPct + $0OverridePct + $AdminFeePct

Defining an object attribute
The following rules apply:

* When a complex object is used as an input parameter in a rule, it is recommended to use a simplified reference
without the input parameter name to address the direct attributes of this object.

¢ [f input parameters do not have objects with the same attributes, the input parameter name can be omitted in the
reference.

¢ If a complex object X is used as an input parameter in a rule, and this object has complex object Y as its attribute,
when referencing object Y attributes in a rule, the input parameter name of the object X can be omitted.

An example of a redundant reference as follows:

SmartRules Double PolicyEndorsementCalculation (Form policyEndorsementForm)
Form Type Premium
OthlnsLocationEndorsement = OtherLocationOccupiedbylnsured (policyEndorsementForm_numberOfFamilies)
IncLowPowRecMotorVehEndorsement = 10 * numOfVeh
MiscellEndorsement = premium
ManuscriptEndorsement 0

A spreadsheet with a redundant reference

A full reference is redundant here and can be omitted as numberOfFamilies is an attribute of the policyEndorsementForm
input paramter. The correct way to use the reference is as follows:

SmartRules Double PolicyEndorsementCalculation (Form policyEndorsementForm)

Form Type Premium
OthinsLocationEndorsement = OtherLocationOccupiedbylnsured (numberOfFamilies)
IncLowPowRecMotorVehEndorsement = 10 * numOfVeh
MiscellEndorsement = premium
ManuscriptEndorsement 0

A spreadsheet with correct reference

An example of referencing an attribute of a complex object that is an attribute of a complex object input parameter is as
follows:

35/156

Jatatype Policy
policyNumber
rateEffectiveDate: context.currentDate
situsState : context.usState

plans

Datatype Plan
planName
coverages
rateBasis

A model describing complex objects structure and their attributes

Spreadsheet SpreadsheetResult DeterminePolicyPremium | Policy policy)
Step Formula
PolicyNumber = policyNumber
RateEffectiveDate = rateEffectiveDate
SitusState = situsState
AllRateBases = rateBasis (plans.coverages)
RateBasisValidation = UniqueRateBasis ($AllRateBases)

A rule that is using reference to the attributes of the nested complex object

In this example, the input parameter in the rule is a complex object Policy, and one of its attributes is a complex object

Plan. The Plan object includes its own attributes where one of them, Coverage, is a complex object as well.

Part of the rule logic is to check rate basis across all plans and coverages to make sure it is the same across all policy. To
get to the rate basis attribute from the Policy object, go 2 levels down and omit the Policy level as Policy is already used as

an input parameter: Plan (1st level down) > Coverage (2nd level down).

policyNumber, situsState do not have the policy.situsState reference as they are direct attributes of Policy. This means
omitting input parameter reference of the top level.

The same syntax can be used in the array of objects, for example, cars.model or model(cars). The models of all cars in the

received array are returned.
Calling a Table from Another Table

When one table’s results are required for calculation in another table, the first table can be called using

where input parameters can be retrieved as follows:

¢ from the current table
¢ specifically declared as in the following ChildBenefitRate table example
* calculated using expressions, that is, formulas or by calling other rules

The input parameter attribute type is not specified when calling a nested rule.

In the following example, a nested rule table HeapedCommissionStrategy is called from the CommissionCalculation
smart rule table.

36 /156

SmartRules Double CommissionCalculation (Commission commission, String state)

Type State Commission
Heaped NY = error ("Heaped commission is not allowed in this state"); null
Heaped |'= HeapedCommissionStrategy (commissionSchedules]||
Flat = flatCommissionPct

Calling a nested rule table from a rule table
The return value type of the nested rule table must match the return value type of the current rule table.
Sometimes specific values must be sent to the nested table. In this case, input parameter values can be specified as follows:

® decalred in the quatation marks "* for String values
* set to true or false for Boolean values

¢ provided as a number for Double and Integer values
¢ set to null for empty values

For example, usually the detailed information about children is not included in the insurance policy and so default values
are used to get the rates:

SmartRules Double ChildBenefitRate | EenefitName benefitName)

Benefit Name Rate
Cancer = CancerRate ("< 1 Year", "Unitobacco”, "Male")
Heart Attack = HeartAttackRate { "< 1 Year", "Unitobacco”, "Male")
Organ Transplant = OrganTranspartRate ("< 1 Year", "Unitobacco”, "Male")
Stroke = StrokeRate ("< 1 Year", "Unitobacco", "Male")
0

simpleLookuy Double CancerRate | AgeBand ageBand, SmokingFlag smokingFlag, Gender gender
Unitobacco Smoking Non Smoking
Age Male Female Unisex| Male :Female Unisex| Male Female Unisex
<iYear 03 @ 02 | 02 03 . 02 | 02 03 | 02 | 02
1to4dYears 02 . 02 @ 02 02 @ 02 02 02 | 02 @ 02
5to9Years 01 : 01 | 0.1 01 : 01 i 01 01 i 01 01

Declaring specific inputs when calling a nested rule table
Using Referents from Return Column Cells

When a condition value from a cell in the Return column must be called, specify the value by using
in the Return column.

371/156

C1 C2 RET1
premiumBase + (suminsured - $C1 lowSuminsured)
Double premiumBase
Sum Insured FROM Sum Insured TO Premium Base
0 10000 0
10000.01 20000 182 02
2000001 40000 319
4000001 150000 A87 31
15000001 200000 TET
200000.01 T63.97
A Decision table with referents inside the Return column
Detailed trace tree Input parameters: Empty HEEE vA
4 47 DT Double BaseRate(Double SUI“[‘IIH; Returned result: 10487.3
W' Indexed condition: C1, Rules: [R
& Condition: C2, Rules: [R4] Rules Double BaseRate (Double suminsured)
c1 c2 RET1

¥| Returned rule: [R4]

Tracing Decision table with referents

suminsured == lowSuminsured suminsured <= hignsuminsured premiumBase + { suminsured - 3C1.lowSuminsured)
Double lowSuminsured

10000 .01

Double highSuminsured

10000
20000
150000
200000

Double premiumBase

Conditions, actions, and result parameters can be accessed from another condition, action, or result using simplified syntax.

The same syntax can be also used for smart rules if external tables are used for condition, action, or result.

Risk of Profile Risk of Operations Risk of Geography
LOW LOW LOwW

LOW LOW MIDDLE

LOW LOW HIGH

Rules String RiskOfWorkWithCorporate [String riskOfProfile, String riskOfOperations, String riskOfGeography)

Total Risk Parameter of C3
LOW String geography
LOW

LOW

Accessing a condition parameter from a return expression by simplified syntax

Using Rule Names and Rule Numbers in the Return Column

Rule names and numbers can be used in the return expression to find out which rule is executed.

number of the rule in the rule table.

is used to get the rule name explicitly defined by the Rule column.

is an implicit

In the following rule example, the second rule row is executed, and rule ID #2 is stored in the priority field of the return:

38/156

SmartRules Status ProcedureCompoundStatus (Procedure currentProcedure, Patient patient)

Procedure Code Patient Age Limit Status Reason code
1 |DOXXX < 16 Denied R1
2 [y B5+ Review Required R2 >
3 Allowed
Returns
Procedure procedure Datatype Status
-
wlnew Status (status, reasonCode, $Ruleld) :) status
String status String reasonCode reasonCode
Status Reason Code teger | priority
Results of running ProcedureCompoundStatus
ID currentProcedure patient Result
1 = Procedure (DOYYY) = Patient = Status
procedureCode = DOYYY name = null reas0n R2
dateOfService = 05/31/2019 dateQfBirth = 05/09/1927
toothArea = null status = Review Reguired

Using $Ruleld and $Rule in the rules table

Using References to Expressions

References to expressions can be used in decision tables. They can be referenced from table headers and within table

body.

e $Expr.C1 is used to reference the expression for condition C1. To address action or return expression use RET1 and

AT respectively.

Rules String BankRatingGroup (Double bankRating)

C1
bankRating + 0.01
DoubleRange rating
Rating
<025 Bad
025-04 = $Expr.Cl textValue +" Review"
04-07 Acceptable ID bankRating Result
0102 - 1 03 bankRating + 0.01 Review
>09 Excellent ~— -

e $Expr.$C1.param1 is an expression defined as a value in a column for the param1 condition parameter. $C1 is

optional. For instance, in the example below, parameter cond is the condition parameter for condition C2. It's

important to use named parameters which is possible in decision tables of Rules type or when working with external

39/156

conditions, actions, or returns in smart tables.

Results of running OfferCoveragesUpdated

ID coverageName coverages policyLocation isCondIgnored Result
1 DCoverage + Collection of Coverage + PersonalHomeLocation Empty - Collection of Coverage
- Coverage
action = null

applicabilities = null

deductibleAmount = null

entityName = DCoverage

entityType = null

isAffectingOffer = null

Coverage Conditions
ACoverage = numberOfFamilles == 1 or numberOfFamilies == 2 Optional isSelected = null
LERGED | Mandaory | 125000 -
BCoverage = coverages['ACoverage').sSelected and Mandatory 100000 label = null
ge'].limi yalue <> 0 -
BCoverage 15000) N + limitAmount = OfferTypeDouble
CCoverage = coverages|"BCoverage”]. limitAmount.userEntryValue >100 Mandatory 500000 0 \ .
. On Demand 100000 0 N offerRebuildResults = null
| ocoverage = coverages|"CCoverage’l.isSelected | Add On 50000 0 N . .
Not Allowed 50000) N relationships = null

returnCondition = coverages["CCoverage"].isSelected
validationResults = null

+ Coverage

return the expression type that contains following attributes:

o - returns AST (Abstract Syntax Tree) tree for the expression
. - returns a string representing an expression

Note: If a cell, which is expected to contain an expression or formula, is empty, it will return null.
Datatype Table

This section describes datatype tables and includes the following topics:

* Introducing Datatype Tables
* Inheritance in Data Types
* Vocabulary Data Types

Introducing Datatype Tables

A Datatype table defines an OpenlL Tablets data structure. A Datatype table is used for the following purposes:

® create a hierarchical data structure combining multiple data elements and their associated data types in hierarchy
¢ define the default values
* create vocabulary for data elements

A compound data type defined by Datatype table is called a custom data type. Datatype tables enable users to create
their own data model which is logically suited for usage in a particular business domain.

For more information on creating vocabulary for data elements, see Vocabulary Data Types.
A Datatype table has the following structure:
1. The first row is the header containing the Datatype keyword followed by the name of the data type.
2. Every row, starting with the second one, represents one attribute of the data type.
The first column contains attribute types, and the second column contains corresponding attribute names.

Note: While there are no special restrictions, usually an attribute type starts with a capital letter and attribute name
starts with a small letter.

40/ 156

3. The third column is optional and defines default values for fields.

Consider the case when a hierarchical logical data structure must be created. The following example of a Datatype table
defines a custom data type called Person. The table represents a structure of the Person data object and combines
Person’s data elements, such as name, social security number, date of birth, gender, and address.

Datatype Person

: name
ssn

dob
gender
address

Datatype table Person

Note that data attribute, or element, address of Person has, by-turn, custom data type Address and consists of zip code,
city, and street attributes.

Datatype Address
Strin zipCode
city
street

Datatype table Address
The following example extends the Person data type with default values for specific fields.

Datatype Person

String name

55N

dob

gender Male
address

Datatype table with default values

The Gender field has the given value Male for all newly created instances if other value is not provided. If a value is
provided, it has a higher priority over the default value and overrides it.

One attribute type can be used for many attribute names if their data elements are the same. For example, insuredGender
and spouseGender attribute names may have Gender attribute type as the same list of values (Male, Female) is defined for
them.

Note for experienced users: Java beans can be used as custom data types in OpenlL Tablets. If a Java bean is used, the
package where the Java bean is located must be imported using a configuration table as described in Configuration Table.

Consider an example of a Datatype table defining a custom data type called Corporation. The following table represents a
structure of the Corporation data object and combines Corporation data elements, such as ID, full name, industry,
ownership, and number of employees. If necessary, default values can be defined in the Datatype table for the fields of
complex type when combination of fields exists with default values.

41/ 156

Datatype Corporation

Siring corporationiD

String corporationFullName

Industry industry other
Ownership ownership private
Integer numberOfEmployees 1
FinancialData financialData _DEFAULT _
QualityIndicators qualitylndicators _DEFAULT _

Datatype table containing value _DEFAULT_
FinancialData refers to the FinancialData data type for default values.

Datatype FinancialData

Date reportDate 01/01/2010
Double cashAndEquivalents 0
Double inventory 0
Double currentAssets 0.0001
Double currentLiabilities 0.0001
Double equity 0
Double revenue 0.0001
Double operatingProfit 0
Double maonthlyCashTurnover 0
Double monthlyAccountsTurnover 0

Datatype table with defined default values

During execution, the system takes default values from FinancialData data type.

Corporation
- Corporation (AUTO)
corporationFullName = AUTO Group
corporationiD = AUTO
- financialData = FinancialData (01/01/2010)

cashAndEquivalents = 3323037
currentAssets = 19394203
currentLiabilities = 11460784
equity = 7121436
inventory = 7985183
monthlyAccountsTurnover = 0
monthlyCashTurnover = 1057541
operatingProfit = 2765741
reportDate = 01/01/2010
revenue = 61834517

industry = trade

numberCfEmployees = 1500

ownership = private

+ qualitylndicators = Qualityindicators (01/01/2010)

42 /156

Datatype table with default values
Note: For array types _DEFAULT _creates an empty array.

Note: It is strongly recommended to leave an empty column right after the third column with default values if such column
is used. Otherwise, in case the data type has 3 or less attributes, errors occur due to transposed tables support in OpenL
Tablets.

Datatype Driver x 4

Datatype Driver

5tring driverlD SSunique ID String driverlD SAunique D
DriverType driverType Principal DriverType driverType Principal
Integer age Integer age

Datatype table with comments nearby

Note: A default value can be defined for String fields of the Datatype table by assigning the "" empty string.

For more information on using runtime context properties in Datatype tables, see Runtime Context Properties in Datatype
Tables.

Datatype table output results can be customized the same way as spreadsheets as described in Spreadsheet Result Output
Customization.

If a spreadsheet returns a data type rather than SpreadsheetResult and the attributes of this data type must be filtered, that
is, included or excluded from the final output structure, attributes of this data type must be marked with ~ or *. An
example is available in Introducing Datatype Tables.

Datatype HomelocationOffer
String locationlD
PackageType packageType
PolicyForm policyForm-~
Plan plans
Integer numberOfFamilies~
Boolean isPrimary~

Filtering data type attributes for the output structure
Inheritance in Data Types

In OpenlL Tablets, one data type can be inherited from another one.

A new data type that inherits from another one contains all fields defined in the parent data type. If a child data type
defines fields that are already defined in the parent data type, warnings, or errors, if the same field is declared with
different types in the child and the parent data type, are displayed.

To specify inheritance, the following header format is used in the Datatype table:

Vocabulary Data Types

43 /156

https://openldocs.readthedocs.io/en/latest/documentation/guides/reference_guide/#introducing-datatype-tables

Vocabulary data types are used to define a list of possible values for a particular data type, that is, to create a vocabulary
for data.

The vocabulary data type is created as follows:
1. The first row is the header.

It starts with the Datatype keyword, followed by the vocabulary data type name. The predefined data type is in
angle brackets based on which the vocabulary data type is created at the end.

2. The second and following rows list values of the vocabulary data type.
The values can be of the indicated predefined data type only.

In the example described in Introducing Datatype Tables, the data type Person has an attribute gender of the Gender data
type which is the following vocabulary data type.

Datatype Gender <String:
Male

Female

Example of vocabulary datatype table with String parameters
Thus, data of Gender data type can only be Male or Female.

Openl Tablets checks all data of the vocabulary data type one whether its value is in the defined list of possible values. If
the value is outside of the valid domain, or defined vocabulary, OpenL Tablets displays an appropriate error. Usage of
vocabulary data types provides data integrity and allows users to avoid accidental mistakes in rules.

Data Table

A data table contains relational data that can be referenced by its table name from other OpenL Tablets tables or Java
code as an array of data.

Data tables are widely used during testing rules process when a user defines all input test data in data tables and reuses
them in several test tables of a project by referencing the data table from test tables. As a result, different tests use the
same data tables to define input parameter values, for example, to avoid duplicating data.

Data tables can contain data types supported by OpenL Tablets or types loaded in OpenL Tablets from other sources. For
more information on data types, see Datatype Table and Working with Data Types.

The following topics are included in this section:

® Using Simple Data Tables

¢ Using Advanced Data Tables

¢ Specifying Data in Data Tables with List and Map Fields
* Specifying Data for Aggregated Objects

® Ensuring Data Integrity

Using Simple Data Tables

Simple data tables define a list of values of data types that have a simple structure.

1. The first row is the header of the following format:

where data type is a type of data the table contains, it can be any predefined or vocabulary data type. For more
information on predefined and vocabulary data types, refer to Working with Data Types and Datatype Table.

44/ 156

2. The second row is a keyword this.
3. The third row is a descriptive table name intended for business users.
4. In the fourth and following rows, values of data are provided.

An example of a data table containing an array of numbers is as follows.

Data Integer numbers
thig

Numbers
10
20
30
40
50

Simple data table
Using Advanced Data Tables

Advanced data tables are used for storing information of a complex structure, such as custom data types and arrays. For
more information on data types, see Datatype Table.

1. The first row of an advanced data table contains text in the following format:

2. Each cell in the second row contains an attribute name of the data type.

For an array of objects, the [i] syntax can be used to define an array of simple datatypes, and [i]. <attributeName> to
define an array of custom datatypes.

3. The third row contains attribute display names.
4. Each row starting from the fourth one contains values for specific data rows.

The following diagram displays a datatype table and a corresponding data table with concrete values below it.

Datatype Person
String name
String 5Eh

Data Person p1
name 55N
Name SSN
Janh £55-55-0001
Paul £55-55-0002

Peter 555-55-0003
hlary 555-55-0004

Datatype table and a corresponding data table

Note: There can be blank cells left in data rows of the table. In this case, OpenL Tablets considers such data as non-existent
for the row and does not initialize any value for it, that is, there will be a null value for attributes or even null for the array
of values if all corresponding cells for them are left blank.

There might be a situation when a user needs a Data table column with unique values, while other columns contain values
that are not unique. In this case, add a column with the predefined _PK_ attribute name, standing for the primary key. It is
called an explicit definition of the primary key.

45/ 156

Data Person person2
PE N name daob gender maritalStatus
1 lonh 1/1/1880 Male Single
2 Peter 5/7/1881 Male Single
3 Peter 10/20/1882 Male Single
4 Mary T/7/1987 Female Married

A Data table with unique _PK_ column

If the _PK_ column is not defined, the first column of the table is used as a primary key. This is called an implicit definition
of the primary key.

Data Policy policyProfiled

potiey [e

drivers >driverProfiles3 Drivers o1
vehicles »autoProfiles3 Vehicles
clientTier Client Tier =~ —slect Al DD%
clientTerm Client Term

¥ p1

o2

Data Drivar driverProfiles3

Referring from one Data table to another using a primary key

A user can call any value from a data table using the following syntax:

<datatable name>[<number of row>] Example: testcars[0]
<datatable name>["<value of PK>"] Example: testcars["BMW 35"]

Specifying Data in Data Tables with List and Map Fields

A list represents an ordered sequence of objects. Unlike array, a list can contain elements of any type. A map is a collection
of key-value pairs. Each element of the map always has two values, a key and a value.

To define data table for lists and maps, use the following syntax:
* for lists, [i]:<element datatype>
[i] is order number
* for maps, ["key"]:<element datatype>
If a datatype table field is a list or a map, use the following syntax:

* for lists, <attribute name>[i]:<element datatype>
* for maps, <attribute name>["key"]:<element datatype>

An example of the data table with a list of values used for zip codes is as follows:

46/ 156

stateName |zipCodes[0]:Integer ZipCodes[1]:Integer
State Zip1 Zip 2

AL 35005 35006

AZ 85001 85002

Data table using a list field defined in the datatype table
Values of the list type can also be defined as a comma-separated list.

An example of the datatype table for this data table is as follows:

Datatype State

Siring stateName
List ZipCodes

Datatype table with a list field

An example of the data table with a map of values used for zip codes is as follows:

PK ["address"]:Address houseNumber |["address"]:Address streetName |["zip"]:Integer
Key House Number Street Name Zip Code

1 196 str1 3344

2 15 str2 3345

Data table for the Map data type containing an aggregated object

An example of the datatype table for this table is as follows:

Datatype Address
String strestMame
Integer houseMumber

A datatype table for the address custom data type
Specifying Data for Aggregated Objects

Assume that the data, which values are to be specified and stored in a data table, is an object of a complex structure with
an attribute that is another complex object. The object that includes another object is called an aggregated object. To
specify an attribute of an aggregated object in a data table, the following name chain format must be used in the row
containing data table attribute names:

To illustrate this approach, assume there are two data types, and defined:

471156

Datatype ZipCode
String zip1

String zip2

Datatype Address

String strest
String city
ZipCode zip

Complex data types defined by Datatype tables

In the data type structure, the data type contains a reference to the data type as its attribute . An
example of a data table that specifies values for both data types at the same time is as follows.

Data Address addresses

street city zip.zipl |zip.zip2
Streetl City Zip1 Zip2
1600 Pennsylania Avenue |¥Washington 20500

1085 Summit Dr Beverly Hills S0210 2814

Specifying values for aggregated objects

In the preceding example, columns Zip1 and Zip2 contain values for the data type referenced by the
aggregated data type.

Note: The attribute name chain can be of any arbitrary depth, for example,

If a data table must store information for an array of objects, OpenL Tablets allows defining attribute values for each
element of an array.

The first option is to use the following format in the row of data table attribute names:

where 1 — sequence number of an element, starts from 0.

The following example illustrates this approach.

Data Policy policies

name driver vehicles[0].model ivehicles[0].price ivehicles[1]l.model ivehicles[1].price
Policy Driver { Vehicle Model ;| Vehicle Price { Vehicle Model { Vehicle Price
Policy1 Sara Honda Odyssey | 3 39,000 Ford C-Max
Policy2 i Shane Toyota Camry |3 12,000
Policy3 | Spencer VW Bug 3 1,500 Mazda 3 B 40,000

Specifying values for an array of aggregated objects using the flatten structure

The first policy, Policy1, contains two vehicles: Honda Odyssey and Ford C-Max; the second policy, Policy2, contains the

only vehicle Toyota Camry; the third policy, Policy3, contains two vehicles: VW Bug and Mazda 3.

Note: The approach is valid for simple cases with an array of simple data type values, and for complex cases with a nested

array of an array, for example,

The second option is to leave the format as is, omitting the [] syntax in column definition
and define elements of an array in
several rows, or in several columns in case of a transposed table.

48 /156

Data Policy policies

name driver vehicles. madel vehicles.price
Policy Driver Vehicle Model Vehicle Price
' Sara Honda Odyssey 3 39,000
Policy Ford C-Max
Paolicy2 Shane Toyota Camry b 12,000
. Spencer VW Bug o 1,500
Policy3 Wiazda 3 5 40,000

Specifying values for an array of aggregated objects using the matrix structure
The following rules and limitations apply:

* The cells of the first column, or aggregated object or test case keys, must be merged with all lines of the same
aggregated object or test case.

A primary key column can be defined if data columns cannot be used for this purpose, for example, for complicated
cases with duplicates.

* The cells of the first column holding array of objects data, or array element keys, must be merged to all lines related
to the same element, or have the same value in all lines of the element, or have the first value provided and other
left blank thus indicating duplication of the previous value.

A primary key column can be defined, for example, if data columns cannot be used for
this purpose. Thus, the primary key cannot be left empty.

* In non-keys columns where only one value is expected to be entered, the value is retrieved from the first line of the
test case and all other lines are ignored.

Even if these following lines are filled with values, no equality verification is performed.
® Primary key columns must be put right before the corresponding object data.
In particular, all primary keys cannot be defined in the very beginning of the table.

Note: All mentioned formats of specifying data for aggregated objects are applicable to the input values or expected result
values definition in the Test and Run tables.

Ensuring Data Integrity

If a data table contains values defined in another data table, it is important to specify this relationship. The relationship
between two data tables is defined using foreign keys, a concept that is used in database management systems.
Reference to another data table must be specified in an additional row below the row where attribute names are entered.
The following format must be used:

In the following example, the cities data table contains values from the states table. To ensure that correct values are
entered, a reference to the code column in the states table is defined.

49 /156

Data City cities Data Supported State states

city shate name code
=states code State/Possession | Abbreviation
City State ALABAMA, AL
Fairbanks Ak ALAZRA Al
Beverly Hills |CA AMERICAMN AS
ARIFOMNA, AT
ARKAMNSAS AR
CALIFORMIA, CA,
COLORADO cio
CONMECTICUT CT
DELAWARE DE

Defining a reference to another data table
If an invalid state abbreviation is entered in the cities table, OpenlL Tablets reports an error.

The target column definition is not required if it is the first column or _PK_ column in the referenced data table. For
example, if a reference is made to the name column in the states table, the following simplified reference can be used:

If a data table contains values defined as a part of another data table, the following format can be used:

The difference from the previous format is that an attribute name of the referenced data table, which corresponding values
are included in the other data table, is specified additionally.

If is omitted, the reference by default is constructed using the first column or _PK_ column of the
referenced data table.

In the following diagram, the claims data table contains values defined in the policies table and related to the vehicle
attribute. A reference to the name column of the policies table is omitted as this is the first column in the table.

Data Policy policies

name driver vehicle.model vehicle year vehicle.price
Policy Driver Vehicle Model ! Vehicle Year : Vehicle Price
Policy1 Sara Honda Odyssey 2005 539,000
Policy2 Shane Toyota Camry 2002 512,000
Policy3 Spencer VW Bug 1965 $1,500

Data Claim claims

id lossDate yehicle amage payment
=paolicies vehicle
Policy | Date of Loss Welitieof PolityrDamage Description: Payment
Claim1 02 July 2012 Paolicy2 broken side window 5350
Claim2 ; 14 March 2013 Palicy3 damaged bumper 3200

Defining a reference to another data table

Note: To ensure that correct values are provided, cell data validation lists can be used in Excel, thus limiting the range of
values that can be entered.

Note: The same syntax of data integration is applicable to the input values or expected result values definition in the Test
and Run tables.

Note: The attribute path can be of any arbitrary depth, for example,

50/ 156

If the array is stored in the field object of the data table, array elements can be referred. An example is as follows.

Test TotalvehiclePremium TotalVehiclePremiumTest
ehicle res_.5SWehicleDiscountsAmount res_.5Vehic nSubtota res_.5TotalVehiclePremium

clerremiun

Vehicle Vehicle Discounts Amount Vehicle Premium Subtotal Total Yehicle Premium

Policy 1 £56.0 £2810 §225.0
Policy 2 £180 £$920 §740
Policy 3 £160.0 £801.0 £641.0

Referring array elements in a test table
Test Table

This section describes test tables and context variables available in these tables. The following topics are included:

¢ Understanding Test Tables
¢ Context Variables Available in Test Tables
* C(Creating a Test Table for a Spreadsheet or Decision Table with SpreadsheetResult as Input Parameter

Understanding Test Tables

A test table is used to perform unit and integration tests on executable rule tables, such as decision tables, spreadsheet
tables, and method tables. It calls a particular table, provides test input values, and checks whether the returned value
matches the expected value.

For example, in the following diagram, the table on the left is a decision table but the table on the right is a unit test table
that tests data of the decision table.

Fules Double RiskFaetor (Date myDate Test RiskFactor RiskFactor
C1 RET1 myDate _res_
dayQfweek | myDate Date Risk Factor
ntRange 12/21/2012 0.85
Day of Week Risk Factor (%) Comment 12/22/2012 1

[2..5] 75% Monday-to-Thursday 12/18/2012 0.75

& 85% Friday RF

100% Weekend RF

Decision table and its unit test table
A test table has the following structure:

1. The first row is the table header, which has the following format:

Test is a keyword that identifies a test table. The second parameter is the name of the rule table to be tested. The
third parameter is the name of the test table and is optional.

2. The second row provides a separate cell for each input parameter of the rule table followed by the _res_ column,
which typically contains the expected test result values.

3. The third row contains display values intended for business users.

4. Starting with the fourth row, each row is an individual test case.

51/156

For more information on how to specify values of input parameters and expected test results of complex constructions, see
Specifying Data for Aggregated Objects and Ensuring Data Integrity.

If a test table field is a list or a map, it can be used to create a data table or test table in the same way as for data tables as
described in Specifying Data in Data Tables with List and Map Fields.

Note for experienced users: Test tables can be used to execute any Java method. In this case, a method table must be
used as a proxy.

When a test table is called, the OpenL Tablets engine calls the specified rule table for every row in the test table and passes
the corresponding input parameters to it.

If there are several rule tables with a different number of parameters but identical names and a test table is applicable to all
rule tables, the test table is matched with the rule table which list of test input parameters matches exactly the list of rules
input parameters in the test table. If there are extra parameters in all rule tables, or input parameters of multiple rule tables
match test input parameters exactly, the Method is ambiguous message is displayed.

Application runtime context values are defined in the runtime environment. Test tables for a table, overloaded by business
dimension properties, must provide values for the runtime context significant for the tested table. Runtime context values
are accessed in the test table through the _context_ prefix. An example of a test table with the context value Lob follows:

Test driverdgeType drivertgeTypeTest

driver _context_lab e
=testDrivers1

Driver Lob

Sara Home Stanclard Driver
Spencer, Sara's Son Hame Old Driver

=ara Avta High Rizk Driver
=pencet, Sara's San Ao “aung Driver

An example of a test table with a context value

For a full list of runtime context variables available, their description, and related Business Dimension versioning properties,
see Context Variables Available in Test Tables.

Tests are numbered automatically. In addition to that, ID (id) can be assigned to the test table thus enabling a user to use it
for running specific test tables by their IDs as described in OpenL Studio Guide > Defining the ID Column for Test Cases.

The _description_ column can be used for entering useful information.

The _error_ column of the test table can be used for a test algorithm where the error function is used. The OpenlL Tablets
Engine compares an error message to the value of the _error_ column to decide if test is passed.

Test dnverRiskScoreTest driverRiskTest

driverRisk _res_ _error_
Driver Risk Expected Risk Expected Error
High Risk Driver 100

Iy Exception

An example of a test table with an expected error column

If OpenL Tablets projects are accessed and modified through OpenL Studio, Ul provides convenient utilities for running
tests and viewing test results. For more information on using OpenL Studio, see OpenL Studio Guide.

Context Variables Available in Test Tables

The following runtime context variables are used in OpenL Tablets and their values can be specified in OpenL test tables
using syntax _ in a column header:

52 /156

https://openldocs.readthedocs.io/en/latest/documentation/guides/webstudio_user_guide/#defining-the-id-column-for-test-cases
https://openldocs.readthedocs.io/en/latest/documentation/guides/webstudio_user_guide

Context
Related
name .. Property names L.
Context . Type versioning | Description
in rule . in rule tables
properties
tables
. Date on which the rule is
Effective /
Current o performed.
Expiration .
Date It is not equal to today’s
dates
date.
Start / End .
Request Date when the rule is
Request .
Date applied.
dates
) LOB (Line . . .
Line of ¢ Line of business the rule is
o
Business . applied for.
Business)
US state where the rule is
US State US States .
applied.
) Country where the rule is
Country Countries .
applied.
us) US region where the rule
) US Region . .
Region is applied.
Currency with which the
Currency Currency . .
rule is applied.
Language in which the
Language Language . .
rule is applied.
. . Economic region where
Region Region . .
the rule is applied.
Canada province of
Canada) Canada)]
) caProvince) caProvinces operation where the rule
Province Province . .
is applied.
Canada region of
Canada . Canada . .
. caRegion) caRegions operation where the rule
Region Region . .
is applied.
User-defined business
Nature nature Nature nature meaning value a rule is
applied to.
Property commonly used
locale locale n/a n/a for internationalization
and localization purposes.

For more information on how property values relate to runtime context values and what rule table is executed, see
Business Dimension Properties and Rules Runtime Context.

Creating a Test Table for a Spreadsheet or Decision Table with SpreadsheetResult as Input Parameter

537156

To create a test table for a spreadsheet or decision table that has another SpreadsheetResult as an input parameter, define
the test table input as follows:

<Input_name>.$<column_name>$<row_name>

<Input_name> is the name of the input parameter. Spreadsheetresult, column_name, and row_name are names from the
spreadsheet table used as input for a table to be tested.

Consider the following spreadsheet table.

Spreadsheet SpreadsheetResult BankRatingCalculation (Bank bank)

CheckCurrentFinancialData T currentFinancialData)

CheckPreviousPeriodFinancialData SetNon Values(previousFi ialData)

BalanceQualityIndexCalculation exCaloulation{currentFinancialData)

BalanceDynamicindexCaleulation = BalanceDynam alculation(currentF ialData, previousFinancialData)

BankQualitativeIndexCalculation =B culation(bank)

IsAdequateNormativeIndexCalculation = I NormativeIndexCalculation(bank)

BankRating = round($BalanceQualityndexCalculation $Value$BalanceQualityIndex * $BalanceDynamicindexCalculation * SBankQualitativeIndexCalculation * SIsAdequateNormativeIndexCalculation, 2)|

Sample spreadsheet table

There is also one more spreadsheet table that uses fields from the first spreadsheet table.

Spreadsheet SpreadsheetResult MaxRating (SpreadsheetResultBankRatingCalculation bankRatingCalculation, String state)

DefaultRating = BankRating (state)
DefinelMlaxRating = max (bankRatingCalculation $BankRating)

Another spreadsheet table referencing fields of the first spreadsheet table

The following syntax is used to define the bankRatings value from SpreadsheetResult BankRatingCalculation as input for
the test table.

Test MaxRating MaxRatingTest
b311_'<RatingCa_lcu.latl-::-n.SBa:ricRaﬁngl_res_.SDefh‘me)Ia:t;Rai".g
Bank Rating |Max Rating

0.41 l0.41

A test table for a spreadsheet table with SpreadsheetResult as input parameter

Run Table

A run table calls a particular rule table multiple times and provides input values for each individual call. Therefore, run
tables are similar to test tables, except they do not perform a check of values returned by the called method.

Note for experienced users: Run tables can be used to execute any Java method.

An example of a run method table is as follows.

Run append appendRun

firstWord secondWord
First Word Second Word
Hi, John!

Hello, Mary!

Good morning, (Bob!

Run table

54 /156

This example assumes there is a rule defined with two input parameters, and .The run
table calls this rule three times with three different sets of input values.

A run table has the following structure:

1. The first row is a table header, which has the following format:

Run <name of rule table to call> <run table name>

The run table name is optional.
2. The second row contains cells with rule input parameter names.
3. The third row contains display values intended for business users.
4. Starting with the fourth row, each row is a set of input parameters to be passed to the called rule table.

For more information on how to specify values of input parameters which have complex constructions, see Specifying Data
for Aggregated Objects and Ensuring Data Integrity.

Method Table

A method table is a Java method described within a table. An example of a method table is as follows:

Method String getGreeting(String name)
return "Hi, "+name;

Method table

The first row is a table header, which has the following format:

where is either Method or Code.

The second row and the following rows are the actual code to be executed. They can reference parameters passed to the
method and all Java objects and tables visible to the OpenL Tablets engine. Code rows may not contain the

keyword. In this case, the last row of the table is returned as the table result.

This table type is intended for users experienced in programming in developing rules of any logic and complexity.
Configuration Table

This section describes the structure of the configuration table and includes the following topics:

¢ Configuration Table Description
* Defining Dependencies between Modules in the Configuration Table

Configuration Table Description

Openl Tablets allows splitting business logic into multiple Excel files, or modules. There are cases when rule tables of one
module need to call rule tables placed in another module. A configuration table is used to indicate module dependency.

Another common purpose of a configuration table is when OpenL Tablets rules need to use objects and methods defined
in the Java environment. To enable use of Java objects and methods in Excel tables, the module must have a configuration
table. A configuration table provides information to the OpenL Tablets engine about available Java packages.

55/156

A configuration table is identified by the keyword Environment in the first row. No additional parameters are required.
Starting with the second row, a configuration table must have two columns. The first column contains commands, and the

second column contains input strings for commands.

The following commands are supported in configuration tables:

Command Description

Adds a dependency module by its name. All data from that module becomes accessible in the current
module.

A dependency module can be located in the current project or its dependency projects. In simple
words, this is how modules,

often represented by Excel files, ‘communicate’ with each other if tables are split into different modules.

Imports the specified Java package, class, or library so that its objects and methods can be used in
tables.

Provides language import functionality.

Expands Openl Tablets capabilities with external set of rules. After adding, external rules are complied

with OpenL Tablets rules and work jointly.

For more information on dependency and import configurations, see Project, Module, and Rule Dependencies.
Defining Dependencies between Modules in the Configuration Table

Often several or even all modules in the project have the same symbols in the beginning of their name. In such case, there
are several options how to list several dependency modules in the Environment table:

¢ adding each dependency module by its name

® adding a link to all dependency modules using the common part of their names and the asterisk * symbol for the
varying part

* adding a link to several dependency modules using the question mark ? symbol to replace one symbol anywhere in

the name
All modules that have any letter or number at the position of the question mark symbol will be added as dependency.

The second option, that is, using the asterisk symbol after the common part of names, is considered a good practice
because of the following reasons:

¢ Any new version of dependency module is not omitted in future and requires no changes to the configuration table.
* The configuration table looks simpler.

Environment

Rating Common
dependency

Rating Domain Model
import org apache commaons lang

Configuration table with dependency modules added by their name

Environment

dependency Rating *
Import arg.apache.commaons.lang

Configuration table with link to all dependency modules

56 /156

Note: When using the asterisk * symbol, if the name of the module where dependency is defined matches the pattern, this
module is automatically excluded from dependent modules to avoid circular dependencies.

The following example illustrates how displaying dependency modules in the configuration table impacts resulting values
calculation. The following modules are defined in the project for an auto insurance policy:

The purpose of this project is to calculate the Vehicle premium. The main algorithm is located in the

Excel file.
DetermineVehiclePremium

Step Value
Wehicle = vehicle
Age = CurrentYear() - year
TheftRating = WehicleThefiRating (bodyType, price, onHighTheftProbabilityList)
InjuryRating = YehiclelnjuryRating (bodyType, airbaglype, hasRaollBar)
Agesurcharge = AgeSurcharge (SAge)
InjuryRatingSurcharge = InjuryRatingSurcharge [SinjuryRating)
TheftRatingSurcharge = TheftRatingSurcharge [STheftRating)
BasePremium = BasePremium [carType)
OtherSurcharges = sum [SAgeSurcharge:&TheftRatingSurcharge)
YehicleDiscount = VehicleDiscount (airbaglype, hasAlarm)
Premium = sum ($BasePremium:-$0therSurcharges) - $VehicleDiscount

Rule with the algorithm to calculate the Vehicle premium

This file also contains the configuration table with the following dependency modules:

Module

Description

Contains the domain model.

Contains rules with the OK state specific values.

All these modules have a common part at the beginning of the name,

The configuration table can be defined with a link to all these modules as follows:

dependency Auto-Rating-*

Configuration table in the Auto-Rating Algorithm.xlsx file

Note: The dash symbol

dependency on

Properties Table

added to the dependency modules names in a common part helps to prevent inclusion of

itself.

Contains rules with the FL state specific values used in the premium calculation.

A properties table is used to define the module and category level properties inherited by tables. The properties table has
the following structure:

57 /156

Element Description

Reserved word that defines the type of the table. It can be followed by a Java identifier. In this case, the
Properties | properties table value
becomes accessible in rules as a field of such name and of the TableProperties type.

Identifies levels on which the property inheritance is defined. Available values are as follows:
- Module

Identifies properties defined for the whole module and inherited by all tables in it.

There can be only one table with the Module scope in one module.

Properties properiy_testi

sCcope Module
effectivelate 470
expirationDate 412801
lanig Er
CUrrency =D
=tate CA

A properties table with the Module level scope
scope
- Category

Identifies properties applied to all tables where the category name equals the name specified in the
category element.

By default, a category name equals to the worksheet name.

Properties property_test2
scope Category
category Testing
Oty & CHDEFFR
[[a]4] Home

[=Tals] SER
CUFTENCY CaD

A properties table with the Category level scope

; Defines the category if the scope element is set to Category. If no value is specified, the category name is
categor
gor retrieved from the sheet name.

Module Identifies whether properties can be overridden and inherited on the module level.

Spreadsheet Table

In OpenlL Tablets, a spreadsheet table is an analogue of the Excel table with rows, columns, formulas, and calculations as

contents even though none of Excel formulas are used in OpenlL Tables. Spreadsheets can also call decision tables or other

executable tables to make decisions on values, and based on those, make calculations.

The format of the spreadsheet table header is as follows:

Spreadsheet SpreadsheetResult <table name> (<input parameters>)

or

Spreadsheet <return type> <table name> (<input parameters>)

The following table describes the spreadsheet table header syntax:

58 /156

Element Description

Spreadsheet Reserved word that defines the type of the table.

SpreadsheetResult | Type of the return value. SpreadsheetResult returns the calculated content of the whole table.

Data type of the returned value. If only a single value is required, its type must be defined here as

a return data type and calculated
<return type>) . . .
in the row or column named RETURN, or in the last row or column if the RETURN keyword is not

defined.
<table name> Valid name of the table as for any executable table.
<input

Input parameters as for any executable table.
parameters>

The first column and row of a spreadsheet table, after the header, make the table column and row names. Values in other
cells are the table values. An example is as follows.

A B C D E
2
3 Spreadsheet SpreadsheetResult calc{)
4 Coll Col2 Col3
5 Row1l] 1
6 Row?2 3 4
7

Spreadsheet table organization

It is common practice to create a spreadsheet table with two columns only: Step where business step names are specified,
and Formula containing action description. A spreadsheet table cell can contain:

* simple values, such as a string or numeric values
¢ values of other data types
¢ formulas, which can be mathematical expressions, rule calls, and other operators or functions

Formulas are preceded by an apostrophe followed by = if editing a table in Excel, or directly with = if editing a table in
OpenL Studio.

¢ another cell value or a range of another cell values referenced in a cell formula

The following table describes how a cell value can be referenced in a spreadsheet table.

Cell name Reference Description

By column name. | Used to refer to the value of another column in the same row.

By row name. Used to refer to the value of another row in the same column.

Full reference. Used to refer to the value of another row and column.

For more information on how to specify a range of cells, see Using Ranges in Spreadsheet Table. Below is an example of a
spreadsheet table with different calculations for an auto insurance policy. Table cells contain simple values, formulas,
references to the value of another cell, and other information.

59 /156

Spreadsheet SpreadsheetResult VehicleCalculation (WVehicle vehicle)

Value
Wehicle = vehicle
Age = CurrentYear() - year
BasePremium = BasePremium (carType)
WehicleDiscount = VehicleDiscount (airbagType, hasAlarm)
PreliminaryPremium = $BasePramium * (1 - $VehicleDiscount)
MinPremium 180
FinalPremium = max ($PreliminaryPremium, $MinPremium)

Spreadsheet table with calculations as content

The data type for each cell can be determined by OpenL Tablets automatically or it can be defined explicitly for each row or
column. The data type for a whole row or column can be specified using the following syntax:

<column name or row name> : <data type>

Note: If both column and row of the cell have a data type specified, the data type of the column is taken.

In OpenL Rule Services, spreadsheet output can be customized by adding or removing rows and columns to display as
described in Spreadsheet Result Output Customization.

The following topics are included in this section:

® Parsing a Spreadsheet Table

* Accessing Spreadsheet Result Cells

¢ Using Ranges in Spreadsheet Table

* Auto Type Discovery Usage

® Custom Spreadsheet Result

® Spreadsheet Result Output Customization
® Testing Spreadsheet Result

Parsing a Spreadsheet Table

Openl Tablets processes spreadsheet tables in two different ways depending on the return type:

1. A spreadsheet returns the result of SpreadsheetResult data type.
2. A spreadsheet returns the result of any other data type different from SpreadsheetResult.

In the first case, users get the value of SpreadsheetResult type that is an analog of result matrix. All calculated cells of the
spreadsheet table are accessible through this result. The following example displays a spreadsheet table of this type.

60 /156

Spreadshest SpreadshectResult DetermineDriverPremium (Driver driver)
s Value
DriverType = DriverdgeType [gender, age)
Eligibility = DriverElgibility { $DriverType, hadTraining)
DriverRisk = DriverRigk { numDUIl, numAccidents, numMovingWiolations |
DriverTypeScore = DriverTypeScore [$0riverType, SEligibility)
DriverRiskScore = DriverRiskScors | $DriverRisk)
DriverPremium = DriverPremium { 30riverType, maritalStatus, state)
DriverRiskPremium = DriverRiskPremium { S0riverRisk)
AccidentPremium = AccidentPremium () * numAccidents
Score = sum ($DriverTypeScore:3DriverRiskScore)
Premium = zum ($DriverPremium:$AccidentPremium)

Results of running DetermineDriverPremium

ID driver Result

1 - Driver (Sara) _ Value
name = Sara DriverType Standard Driver
gender = Female Eligibility Eligible h
age = 25 DrriverRisk Standard Risk Driver
maritalStatus = Single DriverTypeScors 0.0
state = MY DriverRizskScore 0.0
numaccidents = 1 DriverPremium 0o

DriverRiskPremium 0.0

numoving\fiolations = 0

AccidentPremium 150.0
numDUl =0 Score 0.0
hadTraining = false Premium 150.0

Spreadsheet table returns the SpreadsheetResult datatype

In the second case, the returned result type is a data type as in all other rule tables, so there is no need for
SpreadsheetResult in the rule table header. The value of the last row, or the latest one if there are several columns, is
returned. OpenL Tablets calculates line by line as follows:

Spreadsheet Double TierFaetor (Policy policy)
Step Formula Value
Credit_Rating_Points =CreditRatingPoints (creditRating)
Violations_Points = ViolationPaints (drivers)
License_Points = sum (LicensedYearsPoints (drivers, policyEffectiveDate })
Total_Paoints = sum ($Credit_Rating_Points:$Violatione_Points)
Tier_Factor = tierFactor = mapTierPointsToFactor { $Total_Points)
RETURN = §Tier_Factor

Spreadsheet table returning a single value
Accessing Spreadsheet Result Cells
A value of the SpreadsheetResult type means that this is actually a table, or matrix, of values which can be of different

types. A cell is defined by its table column and row. Therefore, a value of a particular spreadsheet cell can be accessed by
cell’s column and row names as follows:

<spreadsheet result variable>.$<column name>$<row name>

61/156

or

If a spreadsheet has one column only, besides the column holding step names, spreadsheet cells can be referenced by row
names. If there is one row and multiple columns, a cell can be referenced by the column name.

CDI’DOI’EIT.E Ratirg is the level of com parys creditworthiness -::Financial Rating] corrected D:." the level of Risk of Work with it
Step value

CheckCurrentFinancialData = SetNonZeroValues| financialData)
FinancialRatingCalculation = FinancialRatingCalculation(financialData, industry)
FinancialRating = $FinancialRatingCalculation.$FinancialRating
RiskOfProfile = RiskOfProfile (corporate)

RiskOfOperations =

R (qualitylndicators)
RiskOfGeography =R ' (qualitylndicators)
RiskOfWorkWithCorporate | = RiskOf\
CorporateRating C

RatingDescription

Referencing a cell by a row name
The same functionality is available in test tables as described in Testing Spreadsheet Result.

The spreadsheet cell can also be accessed using the function, for instance,
. This is a more
complicated option.

Note: If the cell name in columns or rows contains forbidden symbols, such as space or percentage, the cell cannot be
accessed. For more information on symbols that are not allowed, see Java method documentation.

Using Ranges in Spreadsheet Table

The following syntax is used to specify a range in a spreadsheet table:

$FirstValue:$LastValue

An example of using a range this way in the TotalAmount column is as follows.

Spreadsheet SpreadsheetResult IncomeForecast (Double bonusRate, Double sharePrice)

Yearl Year2 Year3 TotalAmount
Salary 145,000 = round (§Year1$Salary * 1.10) =round (§¥ear1$Salary * 1.20) = sum($Yearl:§¥ear3) |
Shares 0) 1,000 =sum(SYearl:5Year3)
Bonus =55alary * bonusRate = ESalary * bonusRate = S5alary * bonusRate = sum(&Yearl:5Year3)
bonusRate =bonusRate =bonusRate =bonusRate
sharePrice =sharePrice =sharePrice =sharePrice
Minsalary = SSalary = SSalary = SSalary =sumiSYearl:$Year3)

= §S5alary + EBonus + = E5alary + EBonus + §Shares *i= 55alary + 5Bonus + 55hares
MaxSalary SSharesj* sharePrice sharEPrize = sharEPjrice = sumf{$Year1-$¥ear)

Using ranges of Spreadsheet table in functions

Note: In expressions, such as , there must be no space before and after the colon

"' operator.

62 /156

Note: It is impossible to make math operations under ranges which names are specified with spaces. Please use step
names without spaces.

Auto Type Discovery Usage

Openl Tablets determines the cell data type automatically without its definition for a row or column. A user can turn on or
off this behavior using the autotype property. If any row or column contains explicit data type definition, it supersedes
automatically determined data type. The following example demonstrates that any data type can be correctly determined
in auto mode. A user can put the mouse cursor over the “=" symbol to check the type of the cell value in OpenL Studio.

Spreadsheet SpreadsheetResult DeterminePolicyPremium (Policy policy)

Step alye

Policy Cell type: SpreadsheetResuliDetermineVehiclePremium]]
Vehicles clePremium { vehicles)

Drivers riverPremium { drivers)

VehiclesPremium = sum | $Value$Premium | $Vehicles 1)

DriversPremium = sum (SValue$Premium ($Drivers j)

ClientDiscount = ClientDiscount (clientTier)

VehiclesScore = gum | $Value$Score | $Vehicles))

DriversScore = sum | $Value$Score | SDrivers)

ClientTierscore = ClientTierScare | chientTier)

Eligibility = PolicyEligibility | clientTerm, $Score)

Score = sum | $VehiclesScore:$ClientTierScore)

Premium = sum ($VehiclesPremium:$DriversPremium) - $ClientDiscount

Auto Type Discovery Property Usage inside Spreadsheet table

The SpreadsheetResult cell type is automatically determined if a user refers to it from another table according to the
following logic:

1. Search for a cell with the same name is performed through all spreadsheets, and its type is set for the current cell.
2. If several spreadsheets have cells with the same name but different types, the nearest common type is set for the
current cell.

Recommendation: To ensure the system identifies types correctly, within the project, use data of the same type in the
steps with the same name.

This logic also works when a user explicitly defines the type of the value as common SpreadsheetResult, for instance, in the
following input parameter definition:

Spreadshest SpreadshestResult DetermineVehiclePremium (Vehicle vehicle, SpreadshestResult driverCalc)
Step Value

Age Currentyeanr) - vear

MainDriver \= driverCalc.$DriverRisk

Defining the value type as SpreadsheetResult

However, there are several limitations of auto type discovering when the system cannot possibly determine the cell data
type:

¢ Type identification algorithm is not able to properly identify the cell type when a cell refers to another cell with the
same name because of occurred circular dependencies.

63 /156

eadsheet SpreadsheetResult LifePremiumCalc { PremiumAndRatePlan[] chargedRate

PremiumAndRatePlan[] geo aoec, ProductType productType, NumberOfLive

Step
ProductType productType
CurrentPlanMName = manualRateStorage.planName

Spreadsheet SpreadsheetResult DetailedimpactsCalc (SpreadsheetResult premiumsByProduct)
Formula

premiumsByProduct. $PolicyNumber

ProductType = premiumsByProduct.$ProductType

DetailedPlanimpacts = DetailedPlanimpacisCalc (premiumsByProduct. $PlanRatesAndPremiums)

Limitation for referring to another cell with the same name

¢ A user explicitly defines the return type of other Rules tables, such as Decision tables, as common SpreadsheetResult

as follows:
SmartRules SpreadsheetResult DriverEligibility (Driver driver)
Driver Status Driver Eligibility
Young Driver = YoungDriverEligibilityCalc (driver)

seniarDriverEligibilityCalc (driver)
AdultDriverEligibilityCalc { driver)

Senior Driver

Explicitly defining the return type of other rules tables

The type of undefined cells must be explicitly defined as a custom spreadsheet result type or any other suitable type

to avoid uncertain Object typing.

* There is a circular dependency in a spreadsheet table calling the same spreadsheet rule itself in a cell. This cell type
must be explicitly defined to allow correct auto type discovering of the whole spreadsheet table as follows:

Spreadshest SpreadshestResult DeterminePremium (Driver driver)
Step Value
Low = LowPremium{driver)
High = HighPremium(driver)
VpdatedDriver = UpdateDriver{driver)
Fremium : Double | = $lLow <= 3High ’(:_Eif'“ﬂi"é:"&"l"L. m [SUpdat&dDri@}.%ﬂalueSPremium - [SLow + $High),2
: - —_— —

Defining a cell type explicitly
Custom Spreadsheet Result
Usage of spreadsheet tables that return the SpreadsheetResult type is improved by having a separate type for each such
spreadsheet table, that is, custom SpreadsheetResult data type, which is determined as follows:

SpreadsheetResult<Spreadsheet table name>

Custom SpreadsheetResult data type is automatically generated by a system and substitutes common SpreadsheetResult

type. This provides the following advantages:

¢ The system understands the structure of the spreadsheet result, that is, knows names of columns and rows, and data

types of cell values.

64 /156

In other words, there is no need to indicate a data type when accessing the cell.
¢ Test spreadsheet cell can be of any complex type.
For more information on test spreadsheet result, see Testing Spreadsheet Result.

To understand how this works, consider the following spreadsheet.

Spreadsheet SpreadshestResult CoveragePremium (String coverageld, Integer coveredProperty, Double koef)

Coverage_Id = coverageld
Covered_Property = coveredProperty + 1
Premium = koef * $Covered_Property

An example of a spreadsheet

The return type is SpreadsheetResult, but it becomes SpreadsheetResultCoveragePremium data type. Now it is possible
to access any calculated cell in a very simplified way without indicating its data type, for example, as displayed in the
following figure.

Spreadsheet SpreadsheetResult FinalPremium (String coverageld, Integer coveredProperty, Double koef)

Coverage_Id Cell type: Spreadsheet ResultCoveragePremium
Coverage_Calc % CoveragePremium (coverageld, coveredProperty, koef)
Final Premium =SCoverage_Calc.5ValueSPremium

Calling Spreadsheet cell
In this example, the spreadsheet table cell is accessed from the returned custom spreadsheet result.

There is no need to specify a custom SpreadsheetResult data type in the header of the spreadsheet table itself. The return
data type is still SpreadsheetResult. Only when passing such spreadsheet as input to another table, the full name must be
declared. For example, if the CensusEmployeeCalc spreadsheet is an input parameter for the ClaimCostCalculation
spreadsheet, (SpreadsheetResultCensusEmployeeCalc censusCalc) must be included in the list of inputs.

Spreadsheet SpreadsheetResult CoverageGalculation (String planMame, Coverage coverage, Double policyFactor, Boolean noGensus, CensusEmplo eEffectiveDate, = situsState, Double tir)
Step Formula

CoverageCode = coverageCode

RateBasis = reteBasis

RateFormat = rateFormat

FilteredCensusByCoverage~ = FilterCensus rage [censusType, coverageCode,

lanMame, census, flatten (classes classNumber) |

CensusCalc~ isNotEmpty (census)? | $FilteredCensusByCoverage, rateEffectiveDate, situsState)
ClaimCostCalc~ fio

coverage, SCensuslslc, planType, rateEffectiveDate, policyFactor, situsState)

Classes on { planName - _.crage, classes, $FilteredCensusByCoverage, §ClaimCostCalc, noCensus, tir)
NumberOfLives

RateCardPremium =

ZoeriumberOflives |
ardPremium ($Classes $RateCardPremium)

Spreadshest SpreadshestResult ClaimCostCalculation | Coverage co\'eragdsp.'eadsheetReauItCensusEmpioyeeCalc[: censustalc, I’ianT}fp& planType, Date rateEffectiveDate, Double policyFactor, Stais situsState)

Step
CoverageCode
ChannslClaimCostCalc = Claim
TotalClaimCost = sum | $ChannelClaimCostCalc.5ClsimCostPerChannel
Plan Adjustment
ProductFactor = { planType |
PlanLimitationFactor = PlanLi Fi frequencyDetails_planLimitation)
LensOptionsFactor = product { entFactor (lensEnhancements })
PlanAdjustment = product | $ProductFactor$Lens0ptionsFactor }
Case Adjustment
AreaFactor = AreaFactorCailc { censusCalc, situsState)

65 /156

Using a custom spreadsheet as an input parameter
United Spreadsheet Result

The combined SpreadsheetResult type is used when the rules table returns different SpreadsheetResults to prevent the cell
type loss. The united SpreadsheetResult is returned in the following cases:

® A rule returns SpreadsheetResult.
¢ Different spreadsheets are called in a ternary operation.
For more information on ternary operations, see Ternary Operator.

* The array of SpreadsheetResult is created by united spreadsheet cells ($Step1:$Step10).

SmartRules SpreadsheetResult ClaimCost [Coverage coverage, CensusEmployee]] censusEmployees, Double adjustmentFactor)

Coverage Name Claim Cost
Employes Basic Life,
Emploves Optional Life = EmployeelifeClaimCostCalculation | coverage, censusEmployees, adjustmentFactor)

Spouse Optional Life,
Child Optional Life = DependentLifeClaimCostCalculation [coverage, censusEmployees, adjustmentFactor)

Example of a rule returning a united spreadsheet result
A united spreadsheet result can be used as an input parameter.

¢ [f the united spreadsheet result is generated as a result of the rule returning spreadsheet results, the input parameter
has the (SpreadsheetResultSpreadsheetName inputValueName) format. Example: SpreadsheetResultClaimCost
claimCostCalc.

¢ [f the united spreadsheet result is generated as a result of the ternary operation of by uniting spreadsheet cells, the
input parameter has the (SRSpr1 & SRSpr2 ruleName) format.

An example is as follows:

Rate = coverage.fundingType == "FullyInsured" ? RateCalculation (rateBasis, $TotalVolume,
$NumberOfLives, $MonthlyPremiumPreliminary) : ASORate (calculatedClass.$TotalNetClaimCost,
TLR, $NumberOfLives, coverage)

If passing results of the Rate step to another rule, the type of the spreadsheet defined in this step is a united spreadsheet
SRRateCalculation & SRASORate.

Spreadsheet Result Output Customization

To simplify integration with OpenL rules, customize serialization output of SpreadsheetResult objects by adding or
removing steps or columns from spreadsheet result output.

¢ To identify steps or columns to be returned in the SOAP/REST response, mark them using the * asterisk symbol.
¢ To ensure that certain steps or columns are not included in output, mark them with the ~ tilde symbol.

Consider the following spreadsheets.

66 /156

Spreadsheet SpreadsheetResult DeterminePolicyPremium (Policy policy)

Step Formula
PolicylD = policylD
VehiclesPremiumCalc = VehiclePremiumCalc (effectiveDate, vehicles)
DriversPremiumCalc = DniverPremiumCalc (effectiveDate, drivers)
PolicyPremiumSubtotal = sum ($VehiclesPremiumCalc_$TotalVehiclePremium) + sum ($DriversPremiumCalc_$TotalDriverPremium)
CustomerDiscount = CustomerDiscountCalc (policy)
TotalPolicyPremium = round { $PolicyPremiumSubtotal * (1 - $CustomerDiscount), 2)

Spreadsheet SpreadsheetResult VehiclePremiumCalc (Date effectiveDate, Vehicle vehicle)

Step Formula
VehiclelD = vehiclelD
CoverageCalculation = CoverageCalc (effectiveDate, coverages, vehicleType, modelYear, mileage)
VehicleCoveragesSum = sum ($CoverageCalculation $CoverageTotal)
VehicleDiscounts = VehicleDiscountsCalc (vehicle)
VehicleDiscountsAmount = round { $VehicleCoveragesSum * $VehicleDiscounts)
TotalVehiclePremium = round { $VehicleCoveragesSum - $VehicleDiscountsAmount, 2)

Spreadsheet SpreadsheetResult DriverPremiumCalc (Date effectiveDate, Driver driver)

Step Formula
DriverlD = driverlD
DriverAge = isNotEmpty (age)? age : yearDiff { effectiveDate, dateOfBirth)
AgeRate = AgeRate ($DriverAge)
RiskAdjustment = RiskAdjustment | driver)
ConvictedDriverFactor = convicted? 1.2:1
TotalDriverPremium = round { $AgeRate * $RiskAdjustment * $ConvictedDriverFactor, 2)

Spreadsheet SpreadsheetResult CoverageCalc | Date effectiveDate, Coverage coverage, VehicleType vehicleType, Integer modelYear, Double mileage) |

Step Formula
CoverageType = coverageType
BaseRate = BaseRate (coverageType)
VehicleYearFactor = VehicleYearFactor { modelYear, effectiveDate)
MileageFactor = MileageFactor (mileage)
CoverageTotal = round (product ($BaseRate:$MileageFactor), 2)

Spreadsheets example

For these spreadsheets, output result is as follows.

"PremiumCalc": {
"PolicyID": "P1",
"VehiclesPremiumCalc": [
{
"VehicleID": "V1",
"CoverageCalculation": [

{
"CoverageType": "Bodily Injury",
"BaseRate": 150,
"VehicleYearFactor": 1.35,
"MileageFactor": 1.19,
"CoverageTotal"”: 240.98

¥

{

"CoverageType": "Property Damage",
"BaseRate": 130,
"VehicleYearFactor": 1.35,
"MileageFactor": 1.19,
"CoverageTotal": 208.85

67 /156

¥
1,
"VehicleCoveragesSum": 449.83,
"VehicleDiscounts": 90.08,
"VehicleDiscountsAmount": 36,
"TotalVehiclePremium": 413.83

¥
])
"DriversPremiumCalc": [
{
"DriverID": "D1",
"DriverAge": 44,
"AgeRate": 1,
"RiskAdjustment": 1,
"ConvictedDriverFactor": 1.2,
"TotalDriverPremium": 1.2
}
1,

"PolicyPremiumSubtotal”: 415.03,
"CustomerDiscount": 0.12,
"TotalPolicyPremium": 365.23

In the following example, some steps are marked with the asterisk to be included in the output.

68 /156

Spreadsheet SpreadsheetResult DeterminePolicyPremium (Policy policy)

Step Formula
PolicylD* = policylD
VehiclesPremiumGCalc* = VehiclePremiumCalc (effectiveDate, vehicles)
DriversPremiumCalc* = DriverPremiumCalc (effectiveDate, drivers)
PolicyPremiumSubtotal = sum ($VehiclesPremiumCalc.$TotalVehiclePremium) + sum ($DriversPremiumCalc.$TotalDriverPremium)
CustomerDiscount = CustomerDiscountCalc (policy)
TotalPolicyPremium* = round ($PolicyPremiumSubtotal * { 1 - $CustomerDiscount), 2)

Spreadsheet SpreadsheetResult VehiclePremiumCalc | Date effectiveDate, Vehicle vehicle)

Step | Formula
VehiclelD* = vehiclelD
CoverageCalculation* = CoverageCalc (effectiveDate, coverages, vehicleType, modelYear, mileage)
VehicleCoveragesSum = sum ($CoverageCalculation $CoverageTotal)
VehicleDiscounts = VehicleDiscountsCalc (vehicle)
VehicleDiscountsAmount = round ($VehicleCoveragesSum * $VehicleDiscounts)
TotalVehiclePremium¥* = round ($VehicleCoveragesSum - $VehicleDiscountsAmount, 2)

Spreadsheet SpreadsheetResult DriverPremiumQCalc (Date effectiveDate, Driver driver)

Step Formula
DriverlD* =driverlD
DriverAge = isNotEmpty (age)? age : yearDiff (effectiveDate, dateOfBirth)
AgeRate = AgeRate ($DriverAge)
RiskAdjustment = RiskAdjustment (driver)
ConvictedDriverFactor =convicted? 1.2:1
TotalDriverPremium* =round ($AgeRate * $RiskAdjustment * $ConvictedDriverFactor, 2)
spreadsheet SpreadsheetResult CoverageCalc (Date effectiveDate, Coverage coverage, VehicleType vehicleType, Integer modelYear, Double mileage
Step Formula
Coveragelype* = coverageType
BaseRate = BaseRate (coverageType)
VehicleYearFactor = VehicleYearFactor (modelYear, effectiveDate)
MileageFactor = MileageFactor (mileage)
CoverageTotal* = round (product ($BaseRate:$MileageFactor), 2)

Example of spreadsheets with mandatory steps

An output for these tables is as follows:

"PremiumCalc": {
"PolicyID": "P1",
"VehiclesPremiumCalc": [
{
"VehicleID": "vi",
"CoverageCalculation": [
{
"CoverageType": "Bodily Injury",
"CoverageTotal"”: 240.98
¥

"CoverageType": "Property Damage",
"CoverageTotal"”: 208.85

}
1,
"TotalVehiclePremium": 413.83

Is

69 /156

"DriversPremiumCalc": [

{
"DriverID": "D1",

"TotalDriverPremium": 1.2

}
1B
"TotalPolicyPremium": 365.23

Within a project, different tables can contain ~ or * markings. Using one or another depends on whether a user needs
more steps to include or exclude into the final result. An example is as follows.

Spreadsheet SpreadsheetResult DeterminePolicyPremium (Policy policy)
Step Formula
PolicylD = policylD
VehiclesPremiumCalc = VehiclePremiumCalc { effectiveDate, vehicles)
DriversPremiumCalc = DriverPremiumCalc (effectiveDate, drivers)
PolicyPremium3ubtotal~ = sum ($VehiclesPremiumCalc.$TotalVehiclePremium) + sum ($DriversPremiumCalc.$TotalDriverPremium)
CustomerDiscount~ = CustomerDiscountCalc (policy)
TotalPolicyPremium = round { $PolicyPremiumSubtotal * { 1 - $CustomerDiscount), 2)
Spreadsheet SpreadsheetResult VehiclePremiumCalc | Date effectiveDate, Vehicle vehicle)
Step Formula
VehiclelD = vehiclelD
CoverageCalculation = CoverageCalc (effectiveDate, coverages, vehicleType, modelYear, mileage)
VehicleCoveragesSum-~ = sum ($CoverageCalculation.$CoverageTotal)
VehicleDiscounts~ = VehicleDiscountsCalc (vehicle)
VehicleDiscountsAmount~ = round { $VehicleCoveragesSum * $VehicleDiscounts)
TotalVehiclePremium = round { $VehicleCoveragesSum - $VehicleDiscountsAmount, 2)
Spreadsheet SpreadsheetResult DriverPremiumCalc (Date effectiveDate, Driver driver)
Step Formula
DriverlD* = driverlD
DriverAge = isNotEmpty (age)? age : yearDiff (effectiveDate, dateOQfBirth)
AgeRate = AgeRate ($DriverAge)
RiskAdjustment = RiskAdjustment (driver)
ConvictedDriverFactor =convicted? 1.2:1
TotalDriverPremium® = round ($AgeRate * $RiskAdjustment * $ConvictedDriverFactor, 2)
Spreadsheet SpreadsheetResult CoverageCalc | Date effectiveDate, Coverage coverage, VehicleType vehicleType, Integer modelYear, Double mileage)
Step Formula
CoverageType* = coverageType
BaseRate = BaseRate (coverageType)
VehicleYearFactor = VehicleYearFactor { modelYear, effectiveDate)
MileageFactor = MileageFactor (mileage)
|CoverageTotaI* |= round (product ($BaseRate:$MileageFactor), 2)

An example of spreadsheets with steps marked to be included and excluded

An output result for these spreadsheets is as follows.

"PremiumCalc": {
"PolicyID": "P1",
"VehiclesPremiumCalc": [

{
"VehicleID": "V1",

70/ 156

"CoverageCalculation": [

"CoverageType": "Bodily Injury",

"CoverageType": "Property Damage",

{
"CoverageTotal"”: 240.98
s
{
"CoverageTotal"”: 208.85
¥
1
"TotalVehiclePremium": 413.83
}
15
"DriversPremiumCalc": [
{
"DriverID": "D1",
"TotalDriverPremium": 1.2
}

Is

"TotalPolicyPremium": 365.23

It is also possible to filter spreadsheet columns identifying the ones to be displayed or hidden in the output result. Use the

~ or * markings depending on whether there are more columns to include or exclude from the final result. The following

naming rules apply:

¢ [f a spreadsheet has two columns, the step name in APl is RowName.

¢ |f a spreadsheet has more than two columns, the step name in APl is ColumnName_RowName.

Note: If there is only one spreadsheet column marked as mandatory, its name in API is just RowName. If there is only one

spreadsheet column left after exclusion besides the step column, its name in APl is also just RowName.

An example is as follows.

Step
BankID
BalanceDynamicIndexCalculation
BankQualitativeIndexCalculation

Spreadsheet SpreadsheetResult BankRaI:ingCalculaﬁnn (Bank bank)

Description

Calculate Indices B, B1, B2, B3
accoding to Financial Data and

Value
= bankID
= BalanceDynamicIndexCalculation(currentFinancialData, previousFinancialData)
= BankQualitativeIndexCalculation(bank)

IsAdequateNormativeIndexCalculation Quality Indicators = IsAdequateNormativelndexCalculation(bank)

BankRating Bank Rating R=BxB1xB2xB3 = round($BalanceDynamicIndexCalculation * $BankQualitativeIndexCalculation *
BankRatingGroup Calculate Bank Rating Group = BankRatingGroup($BankRating)

LimitIndex Calculate Limit Index K1 = BankLimitIndex(bank, $BankRatingGroup)

Timit ErmE =STimifindes Maslimat]

A spreadsheet table with three columns

An output result for this spreadsheet is as follows.

"Value_BankID": "commerz",
"Description_BalanceDynamicIndexCalculation": "Calculate Indices B, B1l, B2, B3 accoding to
Financial Data and Quality Indicators"”,
"Value_BalanceDynamicIndexCalculation": 0.94,
"Description_BankQualitativeIndexCalculation": "Calculate Indices B, B1l, B2, B3 accoding
to Financial Data and Quality Indicators”,
"Value_BankQualitativeIndexCalculation": 0.9,

7117156

"Description_IsAdequateNormativeIndexCalculation”: "Calculate Indices B, B1l, B2,

B3

accoding to Financial Data and Quality Indicators”,
"Value_IsAdequateNormativeIndexCalculation": 1,

"Description_BankRating": "Bank Rating R

"Value_BankRating":

.85,

B x B1 x B2 x B3",

"Description_BankRatingGroup": "Calculate Bank Rating Group",
"Value_BankRatingGroup": "R2",

"Description_LimitIndex": "Calculate Limit Index K1",
"Value_LimitIndex": 1,
"Description_Limit": "Max Limit which Bank is Allowed\nL = K1 x Lmax",

"Value_Limit": 5000

Note that the step names are in the ColumnName_RowName format.

An example of the same spreadsheet with one of the columns excluded using the tilda ~ sign is as follows.

Step
BankID
BalanceDynamicIndexCalculation
BankQualitativeIndexCalculation
IsAdequateNormativelndexCalculation

Spreadsheet SpreadsheetResult BankRaﬁngCalculal:ion (Bank bank)

Description~

Calculate Indices B, B1, B2, B3
accoding to Financial Data and
Quality Indicators

Value
=bankID
= BalanceDynamicIndexCalculation(currentFinancialData, previousFinancialData)
= BankQualitativeIndexCalculation(bank)
=IsAdequateNormativeIndexCalculation(bank)

BankRating

Bank Rating R=B xB1 xB2 xB3

= round($BalanceDynamicIndexCalculation * $BankQualitativelndexCalculation *

BankRatingGroup Calculate Bank Rating Group = BankRatingGroup($BankRating)
LimitIndex Calculate Limit Index K1 = BankLimitIndex(bank, $BankRatingGroup)
Limit Allowed

A spreadsheet table with excluded column

An output result for this spreadsheet is as follows.

"BankID": "commerz",

"BalanceDynamicIndexCalculation": 0.94,
"BankQualitativeIndexCalculation": 0.9,
"IsAdequateNormativeIndexCalculation™: 1,

"BankRating": 0.85,

"BankRatingGroup": "R2",

"LimitIndex":
"Limit": 5000

1,

Note that the step names are in the RowName format because there is only one column left besides the Step column.

Now consider the following example that illustrates simultaneous usage of asterix in columns and steps.

Step
BankID*
BalanceDynamicIndexCalculation
BankQualitativeIndexCalculation

Description

Calculate Indices B, B1, B2, B3
accoding to Financial Data and

Spreadsheet SpreadsheetResult BankRaﬁngCalculaﬁon (Bank bank)

Value*
= bankID

= BalanceDynamicIndexCalculation(currentFinancialData, previousFinancialData)
= BankQualitativeIndexCalculation({bank)

IsAdequateNormativelndexCalculation Quality Indicators =IsAdequateNormativeIndexCalculation(bank)

BankRating Bank Rating R=B xB1 x B2 x B3 = round($BalanceDynamicIndexCalculation * $BankQualitativeIndexCalculation *
BankRatingGroup Calculate Bank Rating Group = BankRatingGroup($BankRating)

LimitIndex Calculate Limit Index K1 = BankLimitIndex(bank, $BankRatingGroup)

o o B ——

A spreadsheet table with filtered columns and steps

721156

An output result for this spreadsheet is as follows.

"BankID": "commerz",

"Limit": 5000

Note: If the Maven plugin is used for generating a spreadsheet result output model, system integration can be based on
generated classes. A default Java package for generated Java beans for particular spreadsheet tables is set using the
spreadsheetResultPackage table property. Nevertheless, it is recommended to avoid any integration based on generated

classes.

Testing Spreadsheet Result

Cells of a spreadsheet result, which is returned by the rule table, can be tested as displayed in the following spreadsheet

table.
comeForecast {Double bonusRate, Double sharePrice
Step Yeard TotalAmount

= round (SY¥earl$Salary i=round (SY¥earl$Salarny © = sum

Salary 4500 * 110} 120) (3Yearl-3Year3)
= sum

Shares 0 0 1000 (BYearl:3¥ear3)
= sum

Bonus =%Salary ¥ bonuzRate = §Salary * bonusRate = §Salary * bonusRate [BYearl:3¥ear3)
= sum

MinSalary i= $Salary = §Salary = §Salary [SY¥earl:-§Year3)
= §iSalary + 3Bonus + = §iSalary + 3Bonus + = §iSalary + 3Bonus + =szum

MaxSalary | $3hares * sharsPrice $Shares * sharsPrice GShares * sharsPrice [$Yearl:SY¥eard)

A sample spreadsheet table

Simplified syntax is used to pull results from a spreadsheet table if a spreadsheet table contains only one column besides

the row name column:

Test IncomeFor

ecast IncomeForeca

bonusRate sharePrice _res__jTotalAmountiMinSala
Bonus Rate Share Price Min Total Salary Max Total Salary
15% 15 $148 500 $185.775
104 325 148 500 F188 2:0
BE% 35 $143,500 $190,925

Test for the sample spreadsheet table

Columns marked with the grey color determine income values, and columns marked with yellow determine the expected
values for a specific number of cells. It is possible to test as many cells as needed.

The result of running this test in OpenL Studio is provided in the following output table.

731156

Results of running IncomeForecastTest

IncomeForecastTest

ID Bonus Rate Share Price Min Total Salary Max Total Salary

1 0.15 13 & 148500 o 135775
2 0.1 23 & 148500 " 138350
3 0.05 35 " 148500 " 190525

The sample spreadsheet test results
It is possible to test cells of the resulting spreadsheet which contain values of complex types, such as:

* array of values
* custom data type with several attributes
® other spreadsheets nested in the current one

For this purpose, the same syntax described in Specifying Data for Aggregated Objects can be used. It also includes
simplified options.

res.$<column name>$<row name>[i]

res.$<column name>$<row name>.<attribute name>

res.$<column of Main Spreadsheet>$<row of Main Spreadsheet>.$<column of Nested
Spreadsheet>$<row of Nested Spreadsheet>

res$<column of Main Spreadsheet>$<row of Main Spreadsheet>[i].$ <column of Nested Spreadsheet>$<row of Nested
Spreadsheet>

where i - sequence number of an element, starts from 0.

Consider an advanced example provided in the following figure. The PolicyCalculation spreadsheet table performs lots of
calculations regarding an insurance policy, including specific calculations for vehicles and a main driver of the policy. In
order to evaluate vehicle and drivers, for example, calculate their score and premium, the VehicleCalculation and
DriverCalculation spreadsheet tables are invoked in cells of the PolicyCalculation rule table.

Spreadsheet SpreadsheetResult PolicyCalculation (Policy policy)

Step Value
Vehicles = VehicleCalculation | vehicles)
MainDriver = DriverCalculation { drivers[O])
Score = sum (GetScore ($Vehicles)) + GetScore | $MainDriver) + ClientTierScore (clientTier)
Eligibility = PolicyEligibility (clientTerm, $Score)
Premium = sum ($Premium ($Vehicles)) + $Premium | $MainDriver) - ClientDiscount | clientTier)

Example of the PolicyCalculation spreadsheet table

741156

Step value

Age = year| effectiveDate) - modelYear
TheftRating i= VehicleThefiRating { bodyType, price, onHighTheftProbabilitylList)
InjuryRating: = VehiclelnjuryRating | bodyType, airbagType, hasRollBar)

[=]

Example of the VehicleCalculation spreadsheet table

Spreadsheet SpreadsheetResult DriverCalculation (Driver driver)

Step value
DriverTypei= DriverAgeType [gender, age)
Eligibility = DriverEligibility ($DriverType, hadTraining)
DriverRisk = DriverRisk { numDUI, numAccidents, numMovingViolations)
Score = DriverTypesScaore | $DriverType, SEligibility) + DriverRiskScore ($DriverRisk)
Premium = DriverPremium { $DriverType, maritalStatus, state) + DriverRiskPremium ($DriverRisk) + AccidentPremium () * numAccidents

The advanced sample spreadsheet table

The structure of the resulting PolicyCalculation spreadsheet is rather complex. Any cell of the result can be tested as
illustrated in the PolicyCalculationTest test table.

Test PolicyCalculation PolicyCalculationTest

policy _res_SPremium | res .SMainDriver.55core ! res .SVWehicles[0].5Age
> testPolicyl

Policy Expected Premium | Expected Driver Score Expected Vehicle 1 Age
Policyl 827.5 0 9

Policy2 2550 120 49

Test for the advanced sample spreadsheet table

To test a spreadsheet that returns a single value, use the same logic as for decision tables.
TBasic Table

A TBasic table is used for code development in a more convenient and structured way rather than using Java or Business
User Language (BUL). It has several clearly defined structural components. Using Excel cells, fonts, and named code column
segments provides clearer definition of complex algorithms.

Important: As this table type is Java code related, TBasic table must not be used unless there is a critical need for it and no
other table type can represent the logic in a simpler way more comprehensive for business users.

In a definite Ul, it can be used as a workflow component.

The format of the TBasic table header is as follows:

TBasic <ReturnType> <TechnicalName> (ARGUMENTS)

The following table describes the TBasic table header syntax:

Element Description
TBasic Reserved word that defines the type of the table.
ReturnType Type of the return value.

751156

Element Description

TechnicalName | Algorithm name.

ARGUMENTS Input arguments as for any executable table.

The following table explains the recommended parts of the structured algorithm:

Element Description

Algorithm precondition or preprocessing | Executed when the component starts execution.

Algorithm steps Represents the main logic of the component.
Postprocess Identifies a part executed when the algorithm part is executed.
User functions and subroutines Contains user functions definition and subroutines.

Column Match Table

A column match table has an attached algorithm. The algorithm denotes the table content and how the return value is
calculated. Usually, this type of table is referred to as a decision tree.
The format of the column match table header is as follows:

ColumnMatch <ALGORITHM> <return type> <table name> (<input parameters>)

The following table describes the column match table header syntax:

Element Description

ColumnMatch Reserved word that defines the type of the table.
<ALGORITHM> Name of the algorithm. This value is optional.
<return type> Type of the return value.

<table name> Valid name of the table.

<input parameters> | Input parameters as for any executable table.

The following predefined algorithms are available:

Element Reference
MATCH MATCH Algorithm
SCORE SCORE Algorithm

WEIGHTED | WEIGHTED Algorithm

Each algorithm has the following mandatory columns:

Column Description

76 /156

Column Description

Names refer to the table or method arguments and bind an argument to a particular row.

N The same argument can be referred in multiple rows. Arguments are referenced by their short names.
ames

For example, if an argument in a table is a Java bean with the some property, it is enough to specify

some in the names column.

The operations column defines how to match or check arguments to values in a table.

The following operations are available:

- match

Checks for equality or belonging to a range. The argument value must be equal to or within a range of
check values.

- min

Operations | Checks for minimally required value. The argument must not be less than the check value.

- max
Checks for a maximally allowed value. The argument must not be greater than the check value.

The min and max operations work with numeric and date types only. The min and max operations can
be replaced

with the match operation and ranges. This approach adds more flexibility because it enables verifying all
cases within one row.

Values The values column typically has multiple sub columns containing table values.

The following topics are included in this section:

* MATCH Algorithm
* SCORE Algorithm
* WEIGHTED Algorithm

MATCH Algorithm

The MATCH algorithm allows mapping a set of conditions to a single return value.

Besides the mandatory columns, such as names, operations, and values, the MATCH table expects that the first data row
contains Return Values, one of which is returned as a result of the ColumnMatch table execution.

ColumnMatch <MATCH> Boolean needApproval[Expense expense)
names operation values
Name Operation Values
Return Values YES YES YES YES NO NO
area match Hardware | Software | Hardware | Software
money min 50000 20000 100000 40000
paysCompany match TRUE TRUE FALSE FALSE
area match Hardware | Software
money max 20000 10000

An example of the MATCH algorithm table

The MATCH algorithm works from top to bottom and left to right. It takes an argument from the upper row and matches it
against check values from left to right. If they match, the algorithm returns the corresponding return value, which is the
one in the same column as the check value. If values do not match, the algorithm switches to the next row. If no match is
found in the whole table, the null object is returned.

771156

If the return type is primitive, such as int, double, or Boolean, a runtime exception is thrown.

The MATCH algorithm supports AND conditions. In this case, it checks whether all arguments from a group match the
corresponding check values and checks values in the same value sub column each time. The AND group of arguments is
created by indenting two or more arguments. The name of the first argument in a group must be left indented.

SCORE Algorithm

The SCORE algorithm calculates the sum of weighted ratings or scores for all matched cases. The SCORE algorithm has the
following mandatory columns:

®* names
® operations
* weight
¢ values

The algorithm expects that the first row contains Score, which is a list of scores or ratings added to the result sum if an
argument matches the check value in the corresponding sub column.

ColumnMatch <SCORE= int scorelssue(lssue issue)
names operation | weight values
MName Operation | Weight Values
Score 10 5 3 3 2 1
area match 1 Loss Profit Budget | Expenses HR
mundane match 2 FALSE
money match 3 1000000+ | 100000+ 25000+ 10000+ 200+

An example of the SCORE algorithm table

The SCORE algorithm works up to down and left to right. It takes the argument value in the first row and checks it against
values from left to right until a match is found. When a match is found, the algorithm takes the score value in the
corresponding sub column and multiples it by the weight of that row. The product is added to the result sum. After that,
the next row is checked. The rest of the check values on the same row are ignored after the first match. The 0 value is
returned if no match is found.

The following limitations apply:

* Only one score can be defined for each row.

¢ AND groups are not supported.

* Any number of rows can refer to the same argument.
* The SCORE algorithm return type is always Integer.

WEIGHTED Algorithm

The WEIGHTED algorithm combines the SCORE and simple MATCH algorithms. The result of the SCORE algorithm is
passed to the MATCH algorithm as an input value. The MATCH algorithm result is returned as the WEIGHTED algorithm
result.

The WEIGHTED algorithm requires the same columns as the SCORE algorithm. Yet it expects that first three rows are
Return Values, Total Score, and Score. Return Values and Total Score represent the MATCH algorithm, and the Score
row is the beginning of the SCORE part.

781156

ColumnMatch <WEIGHTED= 5tring scorelssuelmportance(lssue issue)

names operation | weight values

Name Operation | Weight Values
Return Values CRITICAL HIGH Moderate Low
Total Score min 30 20 10 0
Score 10 5 2 2 2 1
area match 1 Loss Profit Budget | Expenses HR
mundane match 2 FALSE
money match 3 1000000+ | 100000+ 25000+ 10000+ 200+

An example of the WEIGHTED algorithm table

The WEIGHTED algorithm requires the use of an extra method table that joins the SCORE and MATCH algorithm. Testing
the SCORE part can become difficult in this case. Splitting the WEIGHTED table into separate SCORE and MATCH algorithm
tables is recommended.

Constants Table

A constants table allows defining constants of different non-custom types. These constants can be then used across the
whole project and they do not have to be listed as input parameter in the table header.

An example of a constants table and constants usage is as follows.

Constants table

Constants MyConstants
Dats |billingDate 1210/2017 Execution result
Integer |defaultScore 42
String |calculationTextConst|Calculation Success ID arrivalDate Result
1 03/21/2018 Steps Decsription Valus
. . Use constant in
Usmg in tables Stepl formula 101
Spreadsheet SpreadshestResult Calculate & new
Constant_Spreadshest (Dste arrivalDate) Step2 TELIE 35
Steps Deceription Valus Calculstion
— Step3 Text output Success

Stepl Use constant in formula =amivalDate-billingDate
Step2 =defauliScore - 7
Step3 calculationTextConst

Calculate a new score
Text output

Constants table and usage example

"u_n

In this example, users can create names for some values and use those in rule cells without the symbol. Constants are

used in the body of the table but are not listed in the header as input.
The format of the constants table is as follows:
1. The first row is a table header, which has the following format:
Constants <optional table name>
2. The second row contains cells with a type, name, and value of the constant.

An expression can be used for a constant, for example, 1/3. To define an empty string, use the _DEFAULT_ value.

Table Part

7917156

The Table Part functionality enables the user to split a large table into smaller parts, or partial tables. Physically, in the
Excel workbook, the table is represented as several table parts which logically are processed as one rules table.

This functionality is suitable for cases when a user is dealing with file format using a rules table with more than 256
columns or 65,536 rows. To create such a rule table, a user can split the table into several parts and place each part on a
separate worksheet.

Splitting can be vertical or horizontal. In vertical case, the first N1 rows of an original rule table are placed in the first table
part, the next N2 rows in the second table part, and so on. In horizontal case, the first N1 columns of the rule table are
placed in the first table part, the next N2 columns in the second table part, and so on. The header of the original rule table
and its properties definition must be copied to each table part in case of horizontal splitting. Merging of table parts into
the rule table is processed as depicted in the following figures.

TableParttlrow 1 of 2
Tablel header

TablelPartl TablelPartl

TablelPartl TablelPartl

TableParttl row 2 of 2
TablelPart2 TablelPart2
TablelPart2 TablelPart2

Vertical merging of table parts

TablePartt2 columnlof2 | B TablePart t2 column 2 of 2
Table2 header and properties Table2 header and properties
TablelPartl |TablelPartl TablelPart2 |TablelPart2
TablelPartl [TablelPartl | _ |TablelPari2 |TablelPart2

Horizontal merging of table parts
All table parts must be located within one Excel file.
Splitting can be applied to any tables of decision, data, test and run types.

The format of the TablePart header is as follows:

TablePart <table id> <split type> {M} of {N}

The following table describes the TablePart header syntax:

Element Description

TablePart Reserved word that defines the type of the table.

<table Unique name of the rules table. It can be the same as the rules table name if the rules table is not
id> overloaded by properties.

<split " , , L : .

¢ Type of splitting. It is set to row for vertical splitting and column for horizontal splitting.

ype>

{M} Sequential number of the table part: 1, 2, and so on.

{N} Total number of table parts of the rule table.

80/ 156

The following examples illustrate vertical and horizontal splitting of the RiskOfWorkWithCorporate decision rule.

TablePart RiskOfWaorkWithCorporate row 1 of 2
RiskOfWorkWithGorporate

Risk of Risk of Risk of

Profile Operations Geography Total Risk

LOW LOW Low LOW

LOW LOW MIDDLE LOW

LOW LOW HIGH LOW

LOW MIDDLE Low LOow

LOW MIDDLE MIDDLE LOow
Table Parts example. Vertical splitting part 1

TablePart RiskOfwWorkWithCorporate row 2 of 2

Low MIDDLE HIGH MIDDLE

Low HIGH LOwW LOW

Low HIGH MIDDLE MIDDLE

Low HIGH HIGH MIDDLE

MIDDLE Low LOW LOW

MIDDLE Low MIDDLE MIDDLE

Table Parts example. Vertical splitting part2

TablePart RiskOfWorkWithCorporate column 1 of 2
RiskOfWorkWithCorporate

Risk of Profile Risk of Operations
Low Low

Low Low

LOW Low

LOW MIDDLE

LOW MIDDLE

Table Part example. Horizontal splitting part 1

TablePart RiskOrWork\WithCorporate column 2 of 2
RiskOfWorkWithCorporate

Risk of Geography Total Risk

Low LOwW
MIDDLE LOwW
HIGH LOW
LOW LOW
MICDLE LOW

Table Parts example. Horizontal splitting part 2

Table Properties

For all OpenlL Tablets table types, except for Properties Table, Configuration Table and the Other type tables, that is, non-
Openl Tablets tables, properties can be defined as containing information about the table. A list of properties available in

81/156

Openl Tablets is predefined, and all values are expected to be of corresponding types. The exact list of available properties
can vary between installations depending on OpenlL Tablets configuration.

Table properties are displayed in the section which goes immediately after the table header and before other table
contents. The properties section is optional and can be omitted in the table. The first cell in the properties row contains the
properties keyword and is merged across all cells in column if more than one property is defined. The number of rows in
the properties section is equal to the number of properties defined for the table. Each row in the properties section
contains a pair of a property name and a property value in consecutive cells, that is, second and third columns.

SimpleRules DriverType DriverdgeTyvpe (Gender gender, Integer age)
expirationDate 5MEME6
effectiveDate 5/5M15
properties categary Define age of Driver
Gender Age Driver Status
Male =25 Young Driver

Table properties example
The following topics are included in this section:

¢ Category and Module Level Properties
¢ Default Value

* System Properties

® Properties for a Particular Table Type

* Rule Versioning

* Info Properties

* Dev Properties

® Properties Defined in the File Name

® Properties Defined in the Folder Name
* Keywords Usage in a File Name

Category and Module Level Properties

Table properties can be defined not only for each table separately, but for all tables in a specific category or a whole
module. A separate Properties Table is designed to define this kind of properties. Only properties allowed to be inherited
from the category or module level can be defined in this table. Some properties, such as description, can only be defined
for a table.

Besides the Properties table, the module level properties can also be defined in a name of the Excel file corresponding to
the module. For more information on defining properties in the Excel file name, see Properties Defined in the File Name.

Properties defined at the category or module level can be overridden in tables. The priority of property values is as follows:
1. Table.
2. Category.
3. Module.
4. Default value.

Note: The OpenlL Tablets engine allows changing property values via the application code when loading rules.

Default Value

82 /156

Some properties can have default values. A default value is a predefined value that can be changed only in the OpenL
Tablets configuration. The default value is used if no property value is defined in the rule table or in the Properties table.

Properties defined by default are not added to the table's properties section and can only be changed in the Properties
pane on the right side of OpenL Studio Rules Editor.

System Properties

System properties can only be set and updated by OpenL Tablets, not by users. OpenlL Studio defines the following system
properties:

* Created By
* (Created On
* Modified By
* Modified On

For more information on system properties, see OpenL Studio Guide.
Properties for a Particular Table Type

Some properties are used just for particular types of tables. It means that they make sense just for tables of a special type
and can be defined only for those tables. Almost all properties can be defined for Decision Tables, except for the Datatype
Package property intended for Datatype Tables, the Scope property used in Properties Tables, the Auto Type Discovery
property used in Spreadsheet Tables, and the Precision property designed for Test Tables.

Openl Tablets checks applicability of properties and produces an error if the property value is defined for table not
intended to contain the property.

Applications using OpenlL Tablets rules can utilize properties for different purposes. All properties are organized into the
following groups:

Group Description

Business dimension | Business Dimension Properties

Version Rule Versioning
Info Info Properties
Dev Dev Properties

Properties of the Business Dimension and Rule Versioning groups are used for rule versioning. They are described in
detail further on in this guide.

Rule Versioning

In OpenlL Tablets, business rules can be versioned in different ways using properties as described in Table Properties. This
section describes the most popular versioning properties:

Property Description
Business Dimension Targets advanced rules usage when several rule sets are used simultaneously.
Properties This versioning mechanism is more extendable and flexible.

Is more suitable for “what-if" analysis.
Active Table It allows storing the previous versions of rule tables in an inactive status in a project to track
changes or for any other reference.

83/156

https://openldocs.readthedocs.io/en/latest/documentation/guides/webstudio_user_guide

Business Dimension Properties

This section introduces the Business Dimension group properties and includes the following topics:

* Introducing Business Dimension Properties

¢ Using Effective and Expiration Date

® Using a Request Date

® Using an Origin Property

* Overlapping of Properties Values for Versioned Rule Tables
® Rules Runtime Context

* Runtime Context Properties in Datatype Tables

Introducing Business Dimension Properties

The properties of the Business Dimension group are used to version rules by property values. This type of versioning is
typically used when there are rules with the same meaning applied under different conditions. In their projects, users can
have as many rules with the same name as needed; the system selects and applies the required rule by its properties. For
example, calculating employees’ salary for different years can vary by several coefficients, have slight changes in the
formula, or both. In this case using the Business Dimension properties enables users to apply appropriate rule version and

get proper results for every year.
The following table types support versioning by Business Dimension properties:

* Decision tables, including rules, simple rules, smart rules, simple lookups, and smart lookup tables
® Spreadsheet

* TBasic

* Method

¢ ColumnMatch

Note: Test, Datatype, and Data table types cannot be versioned.

When dealing with almost equal rules of the same structure but with slight differences, for example, with changes in any
specific date or state, there is a very simple way to version rule tables by Business Dimension properties. Proceed as
follows:

1. Take the original rule table and set Business Dimension properties that indicate by which property the rules must be

versioned.
Multiple Business Dimension properties can be set.

2. Copy the original rule table, set new dimension properties for this table, and make changes in the table data as
appropriate.

3. Repeat steps 1 and 2 if more rule versions are required.

Now the rule can be called by its name from any place in the project or application. If there are multiple rules with the
same name but different Business Dimension properties, OpenlL Tablets reviews all rules and selects the corresponding one
according to the specified context variables or, in developers’ language, by runtime context values.

**Note: **When creating a versioned rule, keep the input parameter name exactly the same as in the original rule. This is

required for backward compatibility.

The following table contains a list of Business Dimension properties used in OpenlL Tablets:

84 /156

Name to

Name to be b Level to
e
Property used . define Type Description
. used in
in rule tables a property at
context
Time interval within which a rule
table is active.
The table becomes active on the
Effective / . effective date and inactive
o - effectiveDate Module o
Expiration L currentDate Date after the expiration date.
- expirationDate Category Table o
dates Multiple instances of the same table
can exist in the same
module with different effective and
expiration date ranges.
- Time interval within which a rule
Start / .
startRequestDate Module table is introduced
End Request requestDate Date) . .
dates - Category Table in the system and is available for
endRequestDate usage.
LOB LOB for a rule table, that is, business
] Module . area for which
(Line of lob lob String(] .
) Category Table the given rule works and must be
Business)
used.
.)) Module US regions for which the table works
US Region usregion usRegion Enum(]
Category Table and must be used.
. Module Countries for which the table works
Countries country country Enum(]
Category Table and must be used.
Module Currencies for which the table works
Currency currency currency Enum(]
Category Table and must be used.
Module Languages for which this table works
Language lang lang Enum]
Category Table and must be used.
Module US states for which this table works
US States state usState Enum(]
Category Table and must be used.
Canada . . Module Canada provinces of operation to use
. caProvinces caProvince Enum[]
Province Category Table the table for.
Canada . . Module Canada regions of operation to use
. caRegions caRegion Enum(]
Region Category Table the table for.
Economic regions for which the table
. . . Module
Region region region Enum[] | works and
Category
must be used.
Origin of rule to enable hierarchy of
o . Module .
Origin origin Enum more generic
Category Table o
and more specific rules.
Property of any kind holding user-
Module . .
Nature nature nature String defined
Category Table

business meaning.

85/156

The table properties can be obtained using the following syntax:

Variable Description

Returns the object containing all properties of the current table, for example, the effective
date of the rules version

$properties that OpenL determines according to the context data or effective date of the next rule set if
such rule set exists.

To access a particular property, use the $properties.usState syntax.

. . . Returns an array of property objects for all tables with the same signature, that is, all tables
$dispatchingProperties

used in the dispatching logic.

Example: Use setTime(date,0,0,0,0) for testing endRequestDate or expirationDate as follows:
=setTime($properties.endRequestDate, 0, 0,0,0)

Note for experienced users: A particular rule can be called directly regardless of its dimension properties and current
runtime context in OpenL Tablets. This feature is supported by setting the ID property as described in Dev Properties, in a
specific rule, and using this ID as the name of the function to call. During runtime, direct rule is executed avoiding the
mechanism of dispatching between overloaded rules.

For more information on using attributes for runtime context definition, see Runtime Context Properties in Datatype Tables.

lllustrative and very simple examples of how to use Business Dimension properties are provided further in the guide on the
example of Effective/Expiration Date and Request Date.

Using Effective and Expiration Date

The following Business Dimension properties are intended for versioning business rules depending on specific dates:

Property Description

Effective

Dat Date as of which a business rule comes into effect and produces required and expected results.
ate

Date after which the rule is no longer applicable. If Expiration Date is not defined, the rule works at any
Expiration | time on or after the effective date.

Date If Expiration Date is not defined and several versions of a rule satisfy the context, a rule with the newest
effective date is applied.

The date for which the rule is to be performed must fall into the effective and expiration date time interval.

Users can have multiple versions of the same rule table in the same module with different effective and expiration date
ranges. However, these dates cannot overlap with each other, that is, if in one version of the rule effective and expiration
dates are 1.2.2010 — 31.10.2010, do not create another version of that rule with effective and expiration dates within this
dates frame if no other property is applied.

Consider a rule for calculating a car insurance premium quote. The rule is completely the same for different time periods
except for a specific coefficient, a Quote Calculation Factor, or Factor. This factor is defined for each model of car.

The further examples display how these properties define which rule to apply for a particular date.

The following figure displays a business rule for calculating the quote for 2011.The effective date is 1/1/2011 and the
expiration date is 12/31/2011.

86 /156

SimpleRules Double Factor (String ModelOfCar)
effectiveDate 1111
properties expirationDate 12/31/11
Model of Gar Factor for Quote Calculation
BMW 20
Toyota 45
Bentley 20

Business rule for calculating a car insurance quote for year 2011

However, the rule for calculating the quote for the year 2012 cannot be used because the factors for the cars differ from
the previous year.

The rule names and their structure are the same but with the factor values differ. Therefore, it is a good idea to use
versioning in the rules.

To create the rule for the year 2012, proceed as follows:

1. To copy the rule table, use the Copy as New Business Dimension feature in OpenL Studio as described in OpenL
Studio Guide, Creating Tables by Copying section.

2. Change effective and expiration dates to 1/1/2012 and 12/31/2012 appropriately.

3. Replace the factors as appropriate for the year 2012.

The new table resembles the following:

SimpleRules Double Factor {String ModelOfCar)
effectiveDate 1112
properties expirationDate 12/31/12
Model of Car Factor for Quote Calculation
BMW 25
Toyota 40
Bentley 15

Business rule for calculating the same quote for the year 2012

To check how the rules work, test them for a certain car model and particular dates, for example, 5/10/2011 and 11/2/2012.
The test result for BMW is as follows:

Test Factor FactorTest
context.currentDate ModelOfCar _res_
Current Date Model of Car Factor
1 5/10/11 BMW 20
2 1172712 BMW 25

Selection of the Factor based on Effective / Expiration Dates

In this example, the date on which calculation must be performed, per client's request, is displayed in the Current Date
column. In the first row for BMW, the current date value is 5/10/2011, and since 5/10/2011>= 1/1/2011 and 10/5/2011<=
12/31/2011, the result factor for this date is 20.

87 /156

https://openldocs.readthedocs.io/en/latest/documentation/guides/webstudio_user_guide/#creating-tables-by-copying

In the second row, the current date value is 2/11/2012, and since 2/11/2012 >= 1/1/2012 and 2/11/2012 <= 12/31/2012,
the factor is 25.

Using a Request Date
In some cases, it is necessary to define additional time intervals for which user’s business rule is applicable. Table properties

related to dates that can be used for selecting applicable rules have different meaning and work with slightly different logic
compared to the previous ones.

Property Description

Start

Date when the rule is introduced in the system and is available for usage.
Request Date

End Request Date from which the system stops using the rule. If not defined, the rule can be used any time on or
Date after the Start Request Date value.

The date when the rule is applied must be within the Start Request Date and End Request Date interval. In OpenL Tablets
rules, this date is defined as a request date.

Note: Pay attention to the difference between the previous two properties: effective and expiration dates identify the date
to which user’s rules are applied. These dates usually bear legal meaning and a user refers to them when a definite
milestone is achieved, for example, when some business logic or regulations are approved, and the company becomes
legally allowed to use it. In contrast, request dates identify when user’s rules are used, or called from the application.

Users can have multiple rules with different start and end request dates, where dates must intersect. In such cases, priority
rules are applied as follows:

1. The system selects the rule with the latest Start Request date.

properties startRequestDate S| | properties startReguestDate 111
Modelof Car — Facror for Quore Calciaion Model of Car — FaCTor for QUotE Calciation
BN 35 B a5
Test Factor FactorTest Factor F rp—
_contextrequestDate ModelOfCar _res_
Request Date Modelofcar Result ID Request Date Modelofcar Result
S22 BMW 35
1 09/22/2011 BMW o' 35

Example of the priority rule applied to rules with intersected Start Request date

2. If there are rules with the same Start Request date, OpenlL Tablets selects the rule with the earliest End Request

date.
— . o zimpleRules String Factor (String ModelOfla
stadRequesifat — startRequestDate 8111
ertie endR e e e :...' :._.')
propertics Car endRequestDate - 100 properties endRequestDate (RFARTAR]
= i T sl Model of Car Factor for Quote Calculation
BMW 23 -
B a5
est Factor FactorTest FactorTest ——
_context requestDate ModelOfCar _res_
Request Date Modelofcar Result 1D Request Date Modelofcar Result
10711 BMW 25
1 10/07/2011 BMW o 25

887156

Example of the priority rule applied to the rules with End Request date

If the start and end request dates coincide completely, the system displays an error message saying that such table already
exists.

Note: A rule table version with exactly the same Start Request Date or End Request Date cannot be created because it
causes an error message.

Note: In particular cases, request date is used to define the date when the business rule was called for the very first time.

Consider the same rule for calculating a car insurance quote but add date properties, Start Request Date and End
Request Date, in addition to the effective and expiration dates.

For some reason, the rule for the year 2012 must be entered into the system in advance, for example, from 12/1/2011. For
that purpose, add 12/1/2011 as Start Request Date to the rule as displayed in the following figure. Adding this property
tells OpenL Tablets that the rule is applicable from the specified Start Request date.

SimpleRules Double Factor (String ModelOfCa
startRequestDate 1271711
endRequestDate 5112
effectiveDate 1112
properties expirationDate 12/3112
Model of Car Factor for Quote Calculation

BMW 25

Toyota 45

Bentley 20

The rule for calculating the quote is introduced from 12/1/2011

Assume that a new rule with different factors from 2/3/2012 is introduced as displayed in the following figure.

SimpleRules Double Factor (String ModelOfCan
startRequestDate 27312
effectiveDate 1M1M2
properties expirationDate 12/3112
Model of Car Factor for Quote Calculation

BMW 35

Tovota 35

Bentlay 20

The rule for calculating the Quote is introduced from2.3.2011

However, the US legal regulations require that the same rules for premium calculations must be used; therefore, users must
follow the previous rules for older policies. In this case, storing a request date in the application helps to solve this issue. By
the provided request date, OpenL Tablets will be able to select rules available in the system on the designated date.

The following figure displays results of testing the rules for BMW for particular request dates and effective dates.

Test Factor FactorTest
context.requestDate _context_.currentDate ModelOfCa _res_
Request Date Current Date Model of Car Factor
1 3/10/12 10/5/12 BMW 35
2 12/29/12 10715712 BMW 35
3 1/14/12 8/16/12 BMW 25

89 /156

Selection of the Factor based on Start / End Request Dates

In this example, the dates for which the calculation is performed are displayed in the Current Date column. Remember that
it is not today’s date. The dates when the rule is run and calculation is performed are displayed in the Request Date
column. Request date is the date when the results of the rule call are actually requested.

Pay attention to the row where Request Date is 3/10/2012. This date falls in both start and end Request date intervals
displayed in Figure 144 and Figure 145. However, the Start Request date in Figure 145 is later than the one defined in the
rule in Figure 144. As a result, correct factor value is 35.

Using Context Variables as Arguments

Context variables can be used as input parameters. It is one more way to define context, in addition to using a
object or defining a field in a datatype table.

An example of using a context variable as an argument is as follows:

Spreadsheet PlanContractYearlllustration[] ProjectMasterlllustration (Date calculationCallDate:context.requestDate, Date policyEffectiveDate:context.currentDate, PlanPremiumAndRate[] plansAndRates)

Step Formula
ProductCd = plansAndRates[0].coverages [select first having coverageType == "UniversalLife" or coverageType == "WholeLife"].coverageType
SelectPreferedRateCards = MemberDetermination ($ProductCd, plansAndRates)
PredefinedMemberRecord = MemberConfiguration ($ProductCd, plansAndRates, calculationCallDate, policyEffectiveDate)
RETURN = lllustrationPerPlan (plansAndRates.planName, $PredefinedMemberRecord, $SelectPreferedRateCards, $ProductCd)

Using a context variable as an input parameter
Using an Origin Property

The Origin Business Dimension property indicates the origin of rules used to generate a hierarchy of more generic and
more specific rules. This property has two values, Base and Deviation. A rule with the Deviation property value has higher
priority than a rule with the Base value or a rule without property value. A rule with the Base property value has higher
priority than a rule without property value. As a result, selecting the correct version of the rule table does not require any
specific value to be assigned in the runtime context, and the correct rule table is selected based on the hierarchy.

An example is as follows.

90/ 156

4 &) B x b F] &= Available Tests/Runs

Edit Open Copy Remove Run Trace Test Create Test HelloTest (3 test cases)
| SmariRules String Hello (Inteder hour | I SmariRules String Hello (Inteder hour)
properties origin Base properties origin Deviation
Hour Greeting our reeting
0 11 Good Morning 0 11 Guten Morgen
12 17 Good Afternoon 12 17 Guten Tag
18 21 Good Evening 18 21 Guten Abend
22 23 Good Night 22 23 Gute Nacht
q(_:‘fq o He""TeSL HelloTest EX=rES
Hour SES D Hour Result
2 Guten Morgen
15 Guten Tag 1l 2 « Guten Morgen
22 Gute Nacht 29 15 Guten Tag
3¢ 22 o Gute Nacht

Example Rule table with origin property
Overlapping of Properties Values for Versioned Rule Tables

By using different sets of Business Dimension properties, a user can flexibly apply versioning to rules, keeping all rules in
the system. OpenL Tablets runs validation to check gaps and overlaps of properties values for versioned rules.

There are two types of overlaps by Business Dimension properties, “good” and “bad” overlaps. The following diagram
illustrates overlap of properties, representing properties value sets of a versioned rule as circles. For simplicity, two sets are

displayed.

@ ©

No overlap “Good” overlap (52

/ is more detailed ‘/

Example of logic for “good” and "bad” overlaps

/

“Bad” overlap

The No overlap case means that property value sets are totally different and the only one rule table can be selected
according to the specified client request in runtime context. An example is as follows:

91/156

AccidentPremium
properties state CA
Per Accident Premium
$150
AccidentPremium
properties state NY
Per Accident Premium
$145

Example of No overlap case

The “Good” overlap case describes the situation when several rule versions can be selected according to the client request
as there are intersections among their sets, but one of the sets completely embeds another one. In this situation, the rule
version with the most detailed properties set, that is, the set completely embedded in all other sets, is selected for
execution.

Note: If a property value is not specified in the table, the property value is all possible values, that is, any value. It also
covers the case when a property is defined but its value is not set, that it, the value field is left empty.

Detailed properties values mean that all these values are mentioned, or included, or implied in properties values of other
tables. Consider the following example.

AccidentPremium
Per Accident Premium
5135 AccidentPremiumTest
Us State Expected Accident Premium
: AccidentPremium DE 5135
properties state MY, CA, FL MY £145
Per Accident Premium CA $150
$145
AccidentPremium
properties state CA
Per Accident Premium
£150

Example of a rule with "good” overlapping

The first rule table is the most general rule: there are no specified states, so this rule is selected for any client request. It is
the same as if the property state is defined with all states listed in the table. The second rule table has several states values
set, that is, NY, CA, and FL. The last rule version has the most detailed properties set as it can be selected only if the rule is
applied to the California state.

The following diagram illustrates example overlapping.

92 /156

Logic of properties set inclusion

For the Delaware state, the only the first rule is applicable, that is, 135$% Accident Premium. If the rule is applied to the New
York state, then the first and second rule versions are suitable by property values, but according to the “good” overlapping
logic, the premium is 145% because the second rule table is executed. And, finally, Accident Premium for the California
state is 150$ despite the fact that this property is set in all three rule tables: absence of property state in the first table
means the full list of states set.

The “Bad” overlap is when there is no certain result variant. “Bad” overlap means that sets Si and Sj have intersections but
are not embedded. When a “bad” overlap occurs, the system displays the ambiguous error message.

Consider the following example.

AccidentPremium
properties state NY, CA
Per Accident Premium
§145
AccidentPremium
properties state FL, CA
Per Accident Premium
$150

Example of a rule with “bad” overlapping

For the California state, there are two possible versions of the rule, and “good” overlapping logic is not applicable. Upon
running this test case, an error on ambiguous method dispatch is returned.

Note: For the matter of simplicity, only one property, state, is defined in examples of this section. A rule table can have any
number of properties specified which are analyzed on overlapping.

Note: Only properties specified in runtime context are analyzed during execution.

Note: Overlapping functionality is not supported for the Date properties.

Rules Runtime Context

Openl Tablets supports rules overloading by metadata, or business dimension properties.

93/156

Sometimes a user needs business rules that work differently but have the same input.
Consider provided vehicle insurance and a premium calculation rule defined for it as follows:

For different US states, there are different bonus calculation policies. In a simple way, for all states there must be different

calculations:
PREMIUM_ 1 = RISK_PREMIUM + VEHICLE_PREMIUM + DRIVER_PREMIUM - BONUS_1, for state #1
PREMIUM_2 = RISK_PREMIUM + VEHICLE_PREMIUM + DRIVER_PREMIUM - BONUS_2, for state #2

PREMIUM_N = RISK_PREMIUM + VEHICLE_PREMIUM + DRIVER_PREMIUM - BONUS_N, for state #N

Openl Tablets provides a more elegant solution for this case:

PREMIUM = RISK_PREMIUM + VEHICLE_PREMIUM + DRIVER_PREMIUM - BONUS*, where
BONUS* = BONUS_1, for state #1
BONUS* BONUS_2, for state #2

BONUS* BONUS_N, for state #N
So a user has one common premium calculation rule and several different rules for bonus calculation. When running
premium calculation rule, provide the current state as an additional input for OpenL Tablets to choose the appropriate rule.

Using this information OpenL Tablets makes decision which bonus method must be invoked. This kind of information is
called runtime data and must be set into runtime context before running the calculations.

The following OpenL Tablets table snippets illustrate this sample in action.

SimpleRules Double Bonus()
properties istate (STATE #1
Bonus Premium
5100

SimpleRules Double Bonus()
properties istate (STATE #2
Bonus Premium
5150

SimpleRules Double Bonus()
properties istate STATE #N
Bonus Premium
5200

The group of Decision Tables overloaded by properties
All tables for bonus calculation have the same header but a different state property value.

Openl Tablets has predefined runtime context which already has several properties.
Runtime Context Properties in Datatype Tables

To simplify runtime context definition, declare it in the Datatype table fields. Mark datatype fields as a context field to be

used later in rule versioning.

94 /156

Use one of the following formats for runtime context properties:

It is used when a model datatype name equals the context variable name.

It is used when a model datatype field name is not equal to the corresponding context variable name.

For more information on the context variable name, see Introducing Business Dimension Properties, the Name to be used

in context column in the Business Dimension properties list table.

Consider the following example.

To vary rules by the date when insurance was applied for, create a dedicated runtime context property for it in the model

or use the existed one if applicable.

Detatvpe Vehicle

model

year 0
bodyType

airbaglype
applicationDate:context.requestDate

= DiscountSet
discountType
discountRate

RequestDate set as applicationDate in a datatype table

There are two tables describing discount factors, for different request dates.

“ules Discountset VehicleDiscountByDate | Vehicle vehicle
propertias startRequestDate 01/01,/2012
Air Bags Discount Type Discount Rate
Driver Promotional 012
Driver&Passenger Seasonal 0.15
Driver&Passenger&Side Promotional 0.18
Seasonal o1
Promotional 0

95/156

scouni=e=t VehicleDiscountByDate zhicle
properties startRequestDate 01/01/2014
Air Bags Discount Type Discount Rate
Driver Promotional 0.16
Driver&Passenger Seasonal 0.19
Driver&Passengeré&sSide Promaotional 0.24
Seasonal 03
Promotional 0

SmartRules tables with data for different request dates

In the test table, use the attribute name specified in the Datatype table. To test the provided cases, use the applicationDate
attribute name only.

Test VehicleDiscouniByDate VehicleDiscountByDateTest
vehicle.airbaglype vehicle.applicationDate _res_.discountRate

Airbag Type Effective Date Result
Driver 03/18/2012 012
Driver 03/18/2014 0.16

Test table example

Every time the rule is run, OpenlL Tablets consequentially checks the input fields and if a context field is found, it is updated
with the corresponding value.

Active Table

Rule versioning allows storing the previous versions of the same rule table in the same rules file. The active rule versioning
mechanism is based on two properties, version and active. The version property must be different for each table, and only

one of them can have true as a value for the active property.

All rule versions must have the same identity, that is, exactly the same signature and dimensional properties values. Table
types also must be the same.

An example of an inactive rule version is as follows.

SimpleRules Double DriverRiskScore (St
properties
category Driver-scoring
Driver Risk Score
High Risk Driver 100
0

An inactive rule version
Info Properties

The Info group includes properties that provide useful information. This group enables users to easily read and understand
rule tables.

96 /156

The following table provides a list of Info properties along with their brief description:

Name to Level at which

use property can be L.
Property . . Type Description

in rule defined and

tables overridden

Category of the table.

By default, it is equal to the name of the Excel sheet
where the table is located.

Category category Category, Table String If the property level is specified as Table, it defines a
category for the current table.

It must be specified if scope is defined as Category in
the Properties table.

Description of a table that clarifies use of the table.

Description | description Table String]] . .
An example is Car price for a particular Location/Model.
Tag that can be used for search.

Tags tags Table String[] | The value can consist of any number of comma-
separated tags.

Created By | createdBy Table String Name of a user who created the table in OpenL Studio.

Created On | createdOn Table Date Date of table creation in OpenlL Studio.

Modified .) Name of a user who last modified the table in OpenL

modifiedBy | Table String .

By Studio.

Modified . e .

o modifiedOn | Table Date Date of the last table modification in OpenL Studio.

n

Dev Properties

The Dev properties group impacts the OpenL Tablets features and enables system behavior management depending on a
property value.

For example, the Scope property defines whether properties are applicable to a particular category of rules or for the
module. If Scope is defined as Module, the properties are applied for all tables in the current module. If Scope is defined
as Category, use the Category property to specify the exact category to which the property is applicable.

scope Category
category Paolicy-5Scoring
lob category_Policy-Scoring_Lob

The properties are defined for the ‘Police-Scoring’ category
The following topics are included in this section:

® Dev Properties List
* \Variation Related Properties
® Using the Precision Property in Testing

Dev Properties List

The Dev group properties are listed in the following table:

97 /156

Level at

which
Name to be used L.
Property) Type Table type property Description
in rule tables
can be
defined
Unique ID to be used for
calling a particular table
in a set of overloaded tables
without using
ID id Table All Table business dimension
properties.
Note: Constraints for the ID
value are the same
as for any OpenL function.
Property used to manage
Module, dependencies
Build Phase buildPhase String All Category, between build phases.
Table Note: Reserved for future
use.
Validation mode for decision
tables.
In the wrong case an
appropriate warning is
issued.
Possible values are as
o Module,
) .) Decision follows:
Validate DT validateDT String Category,
Table - on: checks for uncovered
Table
or overlapped cases.
- off: validation is turned off.
- gap: checks for uncovered
cases.
- overlap: checks for
overlapped cases.
Rule behavior in case no
rules were matched:
- If the property is set to
TRUE, an error occurs
. Module, along with the
. . . . Decision))
Fail On Miss failOnMuiss Boolean Tabl Category, corresponding explanation.
able
Table
- If the property is set to
FALSE,
the table output is set to
NULL.
. . Module, Scope for the Properties
Scope scope String Properties
Category table.

98 /156

Level at
which
Name to be used L.
Property) Type Table type property Description
in rule tables
can be
defined
Name of the Java package
Datatype . .
datatypePackage String DataType Table for generating
Package
the data type.
Way of a table recalculation
Module, -
for a variation.
Recalculate recalculate Enum Category, .
Possible values are Always,
Table
Never, and Analyze.
Identifier of whether to use
Module, .
cache while
Cacheable cacheable Boolean Category, .
recalculating the table,
Table . .
depending on rule input.
Precision of comparing the
Module,
o o returned results
Precision precision Integer Test Table Category, .
with the expected ones
Table . .
while launching test tables.
Auto detection of data type
for a value
. Module, of the Spreadsheet cell with
Auto Type Properties
) autoType Boolean Category, formula.
Discovery Spreadsheet .
Table The default value is
If the value is , the type
can be left undefined.
Controls whether to parallel
the execution of a rule
Module, when the rule is called for an
Concurrent .
. parallel Boolean Category, array instead of a
Execution . .
Table single value as input
parameter.
Default is
Returns a particular type.
Default is true when
calculation is started
Module, from the beginning of the
Calculate All
Cell calculateAllCells Boolean | Spreadsheet | Category, spreadsheet.
ells
Table If this property is set to false,
calculation is started
from the last line of the
spreadsheet.

99 /156

Level at

which
Name to be used
Property) Type Table type property Description
in rule tables

can be
defined
Identifier of whether to
process blank parameter
value cells and return an
o Module,)
Empty Result . . Decision empty result if found, when
. emptyResultProcessing | String Category, .
Processing table Tabl set to RETURN, or ignore
able

and find the first
non-empty result value,
when set to SKIP (default).

The following example illustrates how the property emptyResultProcessing works depending on property values when

x=1:

SmartRules Integer codes(Integer x)

properties | emptyResultProcessing | SKIP

X RESULT
1-100

1-200 3
1-300 4

SmartRules Integer codes(Integer x)

properties | emptyResultProcessing | RETURN

X RESULT
1-100

1-200 3
1-300 4

Variation Related Properties

This section describes variations and the properties required to work with them, namely Recalculate and Cacheable.

A variation means additional calculation of the same rule with a modification in its arguments. Variations are very useful
when calculating a rule several times with similar arguments. The idea of this approach is to calculate once the rules for a
particular set of arguments and then recalculate only the rules or steps that depend on the fields specifically modified by
variation in those arguments. For example, a user wants to compare the premium with an original set of parameters
defined to the results where one or more attributes are varied to see how it impacts the premium and what is the best
option for this user.

The following Dev properties are used to manage rules recalculation for variations:

Property Description

100/ 156

Property Description

Switches on or off using cache while recalculating the table. It can be evaluated to or

If it is set to , all calculation results of the rule are cached and can be used in other variations;
otherwise, calculation results are not cached.

Cacheable
It is recommended to set Cacheable to if recalculating a rule with the same input parameters is
suggested.

In this case, OpenL does not recalculate the rule, instead, it retrieves the results from the cache.

Explicitly defines the recalculation type of the table for a variation. It can take the following values:
- Always

If the Recalculate property is set to Always for a rule, the rule is entirely recalculated for a variation.
This value is useful for rule tables which are supposed to be recalculated.

- Never

If the Recalculate property is set to Never for a rule, the system does not recalculate the rule for a
Recalculate | variation.

It can be set for rules which new results users are not interested in and which are not required for a
variation.

- Analyze

It must be used for the top level rule tables to ensure recalculation of the included rules with the
Always value.

The included table rules with the Never value are ignored.

By default, the properties are set as follows:

To provide an illustrative example of how to use variation related properties, consider the Spreadsheet rule
DwellPremiumCalculation, as displayed in the following figure, which calculates a home insurance premium quote. The
quote includes calculations of Protection and Key factors which values are dependent on Coverage A limit as defined in
the ProtectionFactor and KeyFactor simple rules. The insurer requests to vary Coverage A limit of the quote to verify how
limit variations impact the Key factor.

DwellPremiumCalculation is a top level rule and during recalculation of the rule, only some results are of interest. That is
why recalculation type, or the recalculate property, must be defined as Analyze for this rule.

As the interest of the insurer is to get a new value of the Key factor for a new Coverage A limit value, recalculation type of
the KeyFactor rule must be determined as Always.

On the contrary, the Protection factor is not interesting for the insurer, so the ProtectionFactor rule is not required to be
recalculated. To optimize the recalculation process, recalculation type of the rule must be set up as Never. Moreover, other
rules tables, such as the BaseRate rule, which are not required to be recalculated, must have the recalculation property set

to Never.
sreadzsheet SpreadsheetResuli DwellPremiumGCalculation (| Folicy policy, Dwell dwe
properties recalculate analyze
Step Formula
Base_Limit = coverages[l@ coverageType == "Coverage A"] limit
Base Raie = BaseRate (territoryCd, policyForm, policyFlan)
Protection_Factor = ProtectionFactor (protectionClass, $Base_Limit)
Key_Factor = KeyFactor ($Base_Limit)
Base_Premium = round(product ($Base_ Rate:$Key Factor))
el et i G L= Pt cpieet . P & —ella [Pun i Cies o wo D gpb= d-ignisasio) et @ el B a b b St L]

101 /156

Spreadsheet table which contains Recalculate Property

simpleLookup Double ProtectionFactor | ProtectionClas

properties recalculate never
Protection Class / Limit <=100 @ >100

1 08 i

2 09 1

3 1 1

2B 12 13

9 1.3 14

10 15 15

Decision table with defined Recalculate Property

SimpleRules Double KeyFactor | Double lin
properties recalculate always
CoverageA Amount ey Factor
0-75 0823
75-80 0833
a0-85 0948
25-90 0962
90 -95 0981
85-100 i
100-105 1023
105-110 1.045
: 11[}-'1_15_ - __ﬁl_;p_?z .

Usage of Variation Recalculate Properties

Consider that the Coverage A limit of the quote is 90 and Protection Class is 9. A modified value of Coverage A limit for
a variation is going to be 110. The following spreadsheet results after the first calculation and the second recalculation are

obtained:
Base_Limit o _90.0;90 Base_Limit o 110.0; ucng
Base_Rate 275.0 i |Base_Rate 275.0
Protection_Factor 12 ratection_Factor 12
Hey_Factor 0.962 _Factor 1.045
Race Dreminm a7 " | Rpca e ErTs

Results of DwellPremiumCalculation with recalculation = Analyze

Note that the Key factor is recalculated, but the Protection factor remains the same and the initial value of Protection
Factor parameter is used.

If the recalculation type of DwellPremiumCalculation is defined as Always, OpenL Tablets ignores and does not analyze
recalculation types of nested rules and recalculates all cells as displayed in the following figure.

Step Formula | Step Formula
Base_Limit 2900:90 | |Base_Limit o 110.0;110 |
Base_Rate 275.0 { |Base_Rate 27510
Protection_Factor 17 rotection_Factor 14)
Hey_Factor 0.962)@'_Facmr 1045 :
Ba</ Premium Bl H Bacs Premium Ll i

Results of DwellPremiumCalculation with recalculation = Always

Using the Precision Property in Testing

102 /156

This section describes how to use the precision property. The property must be used for testing purpose and is only
applicable to the test tables.

There are cases when it is impossible or not needed to define the exact numeric value of an expected result in test tables.
For example, non-terminating rational numbers such as 1 (3.1415926535897...) must be approximated so that it can be
written in a cell of a table.

The Precision property is used as a measure of accuracy of the expected value to the returned value to a certain precision.
Assume the precision of the expected value A is N. The expected value A is true only if

|A —B| < 1/10N, where B — returned value.
It means that if the expected value is close enough to the returned value, the expected value is considered to be true.

Consider the following examples. A simple rule FinRatioWeight has two tests, FinRatioWeightTest1 and
FinRatioWeightTest2:

FinRatioWeight
Financial Ratio Financial Ratio Weight

Cash Liquidity Ratio 0111207645
Quick Ratio 0054117651
Current Ratio 0.420000001
Operating Profit Margin 0414674703

An example of Simple Rule

The first test table has the Precision property defined with value 5:

Test FinRatioWeight FinRatioweightTest1
properties precision 5
financialRatio _res_

Financial Ratio Financial Ratio Weight
Cash Liguidity Ratio 011121358
Quick Ratio 005410091

An Example of Test table with Precision Dev property

FinRatioWeightTestl Eeaad E
Financial Ratio Financial Ratio Weight
Cacsh Liguidity Ratio & 0.1112076545
Quick Ratio 0.054117651 0.05410091

An example of Test with precision defined

When this test is launched, the first test case is passed because |0.11121358 - 0.111207645| = 0.5935*10-5 < 0.00001; but
the second is failed because |0.05410091 - 0.054117651| = 1.6741*10-5 > 0.00001.

Openl Tablets allows specifying precision for a particular column which contains expected result values using the following
syntax:

res (N)
res.$<ColumnName>$<RowName> (N)
res.<attribute name> (N)

103 /156

An example of the table using shortcut definition is as follows.

Test FinRatioWeight FinRatioWeightTest2

financialRatio _res_ (2)

Financial Ratio Financial Ratio Weight
Current Ratio 042
Operating Profit Margin 041

Example of using shortcut definition of Precision Property

FinRatioWeightTest? EASias
Financial Ratio Financial Ratio Weight
Current Ratio W' 0.420000001
Operating Profit Margin & 0.414674703

An example of Test with precision for the column defined

Precision property shortcut definition is required when results of the whole test are considered with one level of rounding,
and some expected result columns are rounded to another number of figures to the right of a decimal point.

Precision defined for the column has higher priority than precision defined at the table level.

Precision can be zero or a negative value, Integer numbers only.
Properties Defined in the File Name

Module level properties, or table properties applied to all tables of a module, can be defined in the module file name.
These properties are usually specified when the logic of the whole project must be split by certain major parameters, such
as country, state, or date. The following conditions must be met for such properties definition:

* A file name pattern is configured directly in a rules project descriptor, in the file, as the
tag, or via OpenL Studio as Properties pattern for a file name in the Project page.
* The module file name matches the pattern.

The file name pattern can include the following:
* text symbols
* table property names enclosed in ‘%" marks

Multiple properties can be defined under one pattern and then parsed into different properties. For example, the .*-
%lob%-%effectiveDate,startRequestDate:ddMMyyyy%-%state% pattern allows a user to parse effectiveDate and
start RequestDate property values.

¢ wildcards, or characters that may be substituted for any of a defined subset of all possible characters

For more information on wildcards that can be used in a pattern as regular expressions, see
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html.

If a table property value is supposed to be a date, the Date format must be specified right after the property name and
colon as follows:

104 /156

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html

.. .<text>%<property name>%<text>%<property name>:<date format>%...

Example: .*-%state%-%effectiveDate %-%startRequestDate %

In this example, the project name or any other text comes instead of .*. Any part of this pattern can be replaced, removed,
or its order can be changed. For more information on properties that can be included, see Business Dimension Properties.

For more information on date formats description and examples, see
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html.

The default date format is yyyyMMdd.

File name pattern definition can use wildcards. For example, the .*-%startRequestDate pattern is defined. Then
for the file name, the module property Start Request Date = 01 Jan 2013 is retrieved and the first
part of the file name with the text is ignored as . * stands for any symbols.

In the following example, the Bank Rating project is configured in the way so that a user can specify the US State and
Start Request Date properties values using the module file name:

Edit Project

kst Latest version (5.23+)

compatibility:
Name: Example 1 - Bank Rating
Description:
A
Custom file name O
processor:

Properties patterns for

-g 04~ 9 o
3 file name: Rules-%stateds YostartRequestDate%o

Test-*
Model

Cancel

File name pattern configured via Openl Studio

<properties-file-name-pattern>AUTO.*-%state¥-%startRequestDate:yyyyddMm¥i</properties-file-name-pattern>

File name pattern in a rules project descriptor directly

105/ 156

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html

Multiple patterns can be used for a file name, for example, to process module names differently. In this case, first, modules
are compared to the first pattern, then the modules that did not match the first pattern and compared to the next pattern
and so on.

For instance, for the Bank Rating project module with the file name the module properties US
State= ‘Florida’, Start Request Date = 01 Jan 2014 will be retrieved and inherited by module tables.

If a file name does not match the pattern, module properties are not defined.

To view detailed information about the properties added to the file name pattern, click information icon next to the
Properties pattern for a file name field.

Froperties file name pattern description

Table properties can be defined for all tables of a madule (module level properties] in a file name of
the maodule.
The file name pattern can include:

+ text symhbaols;

+ tahle property names enclozed in "% marks;

« if atable property value iz supposed to be Date then Date farmat should be alza specified
right after the property name and colon;

“textri<property nameri<textri<property namer:<date format:%

Poszible propetty names: effectiveDate, expirationDate, startRequestDate, endRequestDate,
lob, usregion, country, currency, lang, state, region
Mote: Date formats description and examples can be found in Date and Time Patterns |

For example, for a pattern AUTO-%estate -TeffectiveDate:MMddyyyy't o user can specify
values far properties US State and Effective date via a file name far a whole madule.

Foar instance, far the module with file name AUTO-FL-01022014.x1sx the following madule properties:
US State="Florida', Effective date = 02 Jan 2014 - will be retrieved and inherited by module tables.

If & file name doesn't match the pattern then module properties are not defined.

Close

Properties file name pattern description
The same property cannot be defined both in a file name and Properties table of the module.

For the lob, caProvinces, lang, country, currency, usregion, and state properties, multiple comma-separated values can
be defined in the file name for usage. An example for three LOB and two states is as follows:

A template for this example is as follows:

Note for experienced users: This section describes default implementation of properties definition in the file name. To use
a custom implementation, specify the required file name processor class in a rules project descriptor. When the Custom
file name processor check box is selected, the File name processor class field is displayed.

106 / 156

Edit Project

Mame * Auto Rating

Description

Custom file name ¥
processar

File narme com.exigen.iphb policy preconfig.rating auto ModulelnitializingLister
processor class

Propetrties pattern i
for a file name

Cancel

Custom file name processor class
Properties Defined in the Folder Name

To organize a big number of files with different versions of rules, versioning by folder can be used.

A naming pattern must be added to the file, same as for the file name pattern setup or configured via OpenL
Studio. The name of the folder where the files with versioned rules are stored must match the pattern.

Examples of folder naming:

<properties-file-name-pattern>/%state%-%lob%-
%startRequestDate,effectiveDate’%/MainAlgo.x1lsx</properties-file-name-pattern> - for
versioning a specific file
<properties-file-name-pattern>/%state%-%lob%-%startRequestDate,effectiveDate’/*.*
</properties-file-name-pattern> - for versioning all files in the folder

~ [0 Bank Rating Caleulation
=00 CW-AUTO-01012022,01012022
B MainAlge.xlsx
» B0 CW-AUTO-01012023,01012023
B FL-AUTO-01012022,01012022
* B FL-AUTO-01012023,01012023
* B0 NY-AUTO-01012022,01012022

Defining module level properties in a folder name

The following Ant and file patterns are supported:

Pattern Description

/path/to/file.ext | Absolute path.

/*/ Any folder.

107 / 156

Pattern Description

/**/ Any number of nested folders, including no folders.

* Any character of the file name.

Separator of the file extension.

? Any one symbol of the file name.

Keywords Usage in a File Name

The Any keyword can be used for rule module versioning, for all business enumeration properties. Enumeration properties
have a predefined and finite list of values. Examples of enumeration properties are currency, state, province, region, and
language. The Any keyword can substitute any enumeration property values. For the property pattern .*-%state%-
%effectiveDate %-%currency %, examples are Vision Rules-Any-20190101-USD.xlIsx and Vision Rules-NY-20190101-
Any.xlsx.

An alternative keyword for the state business property is CW, which stands for country wide. If the CW value is set to the
Property State in a file name, the rules of the corresponding module work for any state. Usually, only one value can be
indicated in the file name and listing all values in a filename is not available. This feature enables listing all values for
property state in a file name by defining the CW value instead. It is useful when, for instance, there are particular files with
rules for particular states, and a file with rules common for all states.

To use the feature, define the Properties pattern for a file name as described in Properties Defined in the File Name.

Edit Project

OpenlL version

compatibility: Latest version (5.23+)

MName: Example 2 - Corporate Rating

Description:

Custom file name
processor: A

=
= |

Properties patterns for

: Corporate-%state%-%lob%|
a file name:

Cancel

Defining a property pattern for a state and line of business

108 /156

For instance, consider the Corporate Bank Calculation project configured as displayed in the previous figure. The project
module with the file name has the following property values:

e US State is any state

* lob = test
master / Corporate Rating-CW-test O Save Copy Update Export Test |9
_ﬂ’) = ®K L 3) Table Details
Edit Open Copy Remove Run Trace Create Test
Name CashLiquidityRatioGroup
|—| = Business Dimension
LOB test

US States ALAK,AZ AR,CA,CO,CT,DC,DE,FL,GA,HLID

SimpleRules Integer CashLiquidityRatioGroup (Double

A

cashLiquidityRatio) Add Fropercy
Cash Liquidity Ratio Cash Liguidity Ratio Group

==0.2 1

[0.15..0.2) 10

[0.1..015) 3

=01

Decision table overloaded with all states

To configure a module with the logic specific for one state or a group of states, for example, for NY, name the module
CORPORATE-NY-TEST.xIsx and ensure it has the following property values defined:

e US State = NY
* |ob = test

CW includes all states, but as long as NY specific module is created in this example, Openl Tablets selects this specific
module.

OpenlL Tablets Functions and Supported Data Types

This chapter is intended for OpenL Tablets users to help them better understand how their business rules are processed in
the OpenL Tablets system.

To implement business rules logic, users need to instruct OpenL Tablets what they want to do. For that, one or several rule
tables with user’s rules logic description must be created.

Usually, rules operate with some data from user's domain to perform certain actions or return some results. The actions are
performed using functions, which, in turn, support particular data types.

This section describes data types and functions for business rules management in the system and introduces basic
principles of using arrays.

The section includes the following topics:

* Working with Arrays
* Working with Data Types
* Working with Functions

Working with Arrays

An array is a collection of values of the same type. Separate values of an array are called array elements. An array
element is a value of any data type available in the system, such as Integer, Double, Boolean, and String. For more
information on OpenL Tablets Data Types, see Working with Data Types.

109 /156

Square brackets in the name of the data type indicate that there is an array of values in the user's rule to be dealt with. For
example, the expression can be used to represent an array of text elements of the String data type, such as US
state names, for example, CA, NJ, and VA. Users use arrays for different purposes, such as calculating statistics and
representing multiple rates.

The following topics are included in this section:

* Working with Arrays from Rules

* Array Index Operators

® Operators and Functions to Work with Arrays
* Rules Applied to Array

* Rules with Variable Length Arguments

Working with Arrays from Rules

Data type arrays can be used in rules as follows:

Method Description
By numeric
index, In this case, by calling , a user gets the sixth element of the data type array.

starting from 0

This case is a little more complicated. The first field of data type is considered to be the user

defined index.

For example, if there is a Driver data type with the first String field name, a data table can be
created, initializing two instances
of Driver with the following names: John and David. Then in rules, the required instance can be
By user defined called by
index
All Java types, including primitives, and data types can be used for user specific indexes.
When the first field of data type is of type called to call the instance from array, wrap it
with quotes as in

. In this case, a user does not get the eighth element in the array, but the Driver
with ID=7.
For more information on data tables, see Data Table.

B ditional Another case is to use conditions that consider which elements must be selected.
conditiona
y For this purpose, SELECT operators are used, which specify conditions for selection.

index

For more information on how to use SELECT operators, see Array Index Operators.
By other array Any index operator listed in Array Index Operators or a function designed to work with arrays can
index be applied to an array in user rules.
operators and The full list of OpenL Tablets array functions is provided in Appendix B: Functions Used in OpenL
functions Tablets.

When referencing the non-existing element by array[index], for primitive types, the default value is returned, and for other
types, null is returned.

Array Index Operators
Array index operators are operators which facilitate working with arrays in rules. Index operators are specified in square

brackets of the array and apply particular actions to array elements.

110/ 156

This section provides detailed description of index operators along with examples. OpenL Tablets supports the following

index operators:

e SELECT Operators

* ORDER BY Operators

e SPLIT BY Operator

¢ TRANSFORM TO Operators

¢ Array Index Operators and Arrays of the SpreadsheetResult Type
¢ Advanced Usage of Array Index Operators

SELECT Operators

There are cases requiring conditions that determine the elements of the array to be selected. For example, if there is a data
type Driver with such fields as name of the String type, age of the Integer type, and other similar data, and all drivers with
the name John aged under 20 must be selected, use the following SELECT operator realizing conditional index:

The following table describes the SELECT operator types:

Type Description
Returns the first Returns the first matching element or null if there is no such element.
element Syntax: or or

satisfying the

condition Example:
Returns all Returns the array of matching elements or empty array if there are no such elements.
elements Syntax: or or
satisfying the
condition Example:

ORDER BY Operators

These operators are intended to sort elements of the array. Consider a data type Claim with such fields as lossDate of the
Date type, paymentAmount of the Double type, and other similar data, and all claims must be sorted by loss date starting
with the earliest one. In this case, use the ORDER BY operator, such as

The following table describes ways of sorting:

Method Description

Syntax: or or
Sort elements by

increasing order

Example:
Sort elements by Syntax: or
decreasing order Example:

Note: The operator returns the array with ordered elements. It saves element order in case of equal elements.
by which ordering is performed must have a comparable type, such as Date, String, Number.

SPLIT BY Operator

To split array elements into groups by definite criteria, use SPLIT BY operator, which returns a collection of arrays with
elements in each array of the same criteria. For example,

111 /156

will produce three collections, united by codes
with the equal first number.

Syntax: or

Example:

where orders of data type, custom data type Order has a field orderType for defining a category of Order. The
operator in the example produces split by different categories.

The SPLIT BY operator returns a two-dimensional array containing arrays of elements split by an equal value of
. The relative element order is preserved.

TRANSFORM TO Operators

This operator turns source array elements into another transformed array in a quick way. Assume that a collection of claims
is available and claim ID and loss date information for each claim in the form of array of strings needs to be returned. Use
the TRANSFORM TO operator, such as

The following table describes methods of transforming:

Method Description
Transforms elements and
Syntax: or
returns
Example: or
the whole transformed array
Syntax: or
Transforms elements and
returns Example: or
unique elements of the Example: returns a unique list
transformed array only of products where “p" is the name
given by a user for the transformed array.

The example above produces collection of vehicles, and in this collection, each vehicle is listed only once, without identical

vehicles.

The operator returns array of the type. The order of the elements is preserved.

Any field, method of the collection element, or any OpenlL Tablets function can be used in /

for example: where is a field of the Claim array

element; where is a method of String element of the

array.
Array Index Operators and Arrays of the SpreadsheetResult Type

Array index operators can be used with arrays which elements are of SpreadsheetResult data type. To refer to a cell of
SpreadsheetResult element in the operator condition, the full or simplified reference format is
used.

Consider an example with select operator. There is a rule which selects and returns spreadsheet result with value 2 in the
$Formula$EmployeeClassid cell.

Methed SpreadsheetResult FiustEmpll(SpreadsheetResult]] allEmploveeClassPremnms)

return allEmployeeClassPremiums[select first having SFormulaSEmploveeClassId = 2;

112 /156

Index operator applied on array of SpreadsheetResults

where the spreadsheet result element of allEmployeeClassPremiums array is calculated from the following spreadsheet
table:

emploveeClazs)
Step Formula

EmplovesClassid =id

Spreadsheet for allEmployeeClassPremiums array result calculation
Advanced Usage of Array Index Operators

Consider a case when the name of the array element needs to be referred explicitly in condition or expression. For
example, the policy has a collection of drivers of Driver[] data type and a user wants to select all policy drivers of the age
less than 19, except for the primary driver. The following syntax with an explicit definition of the collection
element can be used:

Note for experienced users: An expression can be written using the explicit type definition, via the (Datatype x) syntax,
and array index operators can be applied to lists. Examples are as follows.

- List claims

policy.getClaims(); claims[(Claim claim) order by claim.date]
- List claims = policy.getClaims(); claims[(Claim claim) ~@ date]
Operators and Functions to Work with Arrays

This section describes operators and functions used in work with arrays and includes the following topics:

® Length Function
® Comparison Operators

For more information on array functions, see Appendix B: Functions Used in OpenL Tablets.
Length Function

The Length array function returns the number of elements in the array as a result value. An example is as follows.

InsuranceProcedure

String res

Car park Insurance procedure
2 Senior Auto Driver
Standard Auto Driver

Rule table with the length function

In this example, the Insurance procedure depends on the number of vehicles. The policy includes vehicles field

represented as array.

113 /156

Test InsuranceProcedure InsuranceProcedureTest

(]

policy res

NameofPoliy Insuranceprocedure

L Policy2 Senior Auto Driver
1] MName of Policy Insurance procedure
1 + Policy (Policy2) «¥ Senior Auto Driver

Test table for rule table with length function

Policy2 contains two vehicles as illustrated in the following data table.

Data Policy policyProfile2

Data table for a test table

Note: The length function can be used for maps, in the same way as it is used for collections and arrays.

Comparison Operators

== and != comparison operators can be applied to arrays. Array elements are compared one-by-one, and for each element
pair, if comparison result is true, all array comparison result is true. For more information on operators, see Operators Used
in OpenlL Tablets.

Rules Applied to Array

Openl Tablets allows applying a rule intended for work with one value to an array of values. The following example
demonstrates this feature in a very simple way.

114 /156

Spreadsheet SpreadsheetResult PolicyCalculation (Policy policy)

Step . Value
Policy ~ _=polcy
Vehicles FEehicleCalculatiDn { vehicles) I --
Premium = sum (GetPremium ($vehicles)) - ClientDiscount (clientTier)

Premium := ($BasePremium + $Surcharge) * (1 - $VehicleDiscount)

Applying a rule to an array of values

The VehicleCalculation rule is designed for working with one vehicle as an input parameter and returns one spreadsheet
as a result. In the example, this rule is applied to an array of vehicles, which means that it is executed for each vehicle and
returns an array of spreadsheet results.

If several input parameters for a rule are arrays where the rule expects only a single value, the rule is separately calculated
for each element of these arrays, and the result is an array of the return type. In other words, OpenL Tablets executes the
rule for each combination of input values from arrays and return a collection of all these combinations’ results. The order in
which these arrays are iterated is not specified.

Note: OpenlL Tablets engine may run parts of one request in parallel and Dev property is used to
enable or disable this behavior in case when the rule table is applied to an array of value instead of a single value.

is useful for complex rule sets where parallel execution will improve performance for a single
request. But note that modifying arguments of the rule are not thread safe.

Rules with Variable Length Arguments

If the last input of the table is an array, OpenL Tablets allows passing this array as an array or a set of comma-separated
elements.

An example is as follows:

It can be called as follows:

In this example, OpenlL recognizes and transforms all last numbers-inputs into a single array of numbers-input.

Working with Data Types

Data in OpenL Tablets must have a type of data defined. A data type indicates the meaning of the data, their possible
values, and instructs OpenlL Tablets how to process operations, which rules can be performed, and how these rules and
operations affect data.

115/ 156

All data types used in OpenlL Tablets can be divided into the following groups:

Type

Description

Predefined data types

Types that exist in OpenL Tablets, can be used, but cannot be modified.

Custom data types and vocabularies

Types created by a user as described in the Datatype Table section.

This section describes predefined data types that include the following ones:

® Simple Data Types

* Range Data Types
* V\oid Data Type

Simple Data Types

The following table lists simple data types that can be used in user’s business rules in OpenL Tablets:

Data
¢ Description Examples Usage in OpenlL Tablets
ype
Used to work with whole numbers))
. Common for representing a variety of
without
. . numbers,
Integer fraction points. 8; 45; 12; 356; 2011 o
]) such as driver’s age, a year, a number of
The maximum Integer value is))
points, and mileage.
2147483647.
Commonly used for calculating balances
or discount
values for representing exchange rates, a
monthly income,
and so on. In other words, the dollar or
. . . any other
Used for operations with fractional 8.4;10.5; 12.8;)
currency value that does not require very
Double numbers. Can hold very large 12,000.00; . .
high precision
or very small numbers. 44.416666666666664
must be of a Double data type.
A good practice is to explicitly round
Double values
to a business significative number of
decimals after calculation,
at least in end results.
Represents text rather than
numbers.
String values are comprised of a set .
‘ Represents cities, states, people names, car
o
. John Smith, London, models, genders,
characters that can contain spaces .
) Alaska, marital statuses, as well as messages, such
String and numbers. o .
BMW; Driver is too as warnings,
For example, the word Chrysler and)) o
young. reasons, notes, diagnosis, and other similar
the phrase dat
ata.
The Chrysler factory warranty is
valid for 3 years
are both Strings.

116 /156

Data
¢ Description Examples Usage in OpenlL Tablets
ype
Represents only two possible values:
true and false.
For example, if a driver is trained, . .
L Handles conditions in OpenL Tablets.
the condition is , and the true; yes; y; false; no; L) ,
Boolean | . . L The synonym for ‘true’ is 'yes’, 'y’; for ‘false
insurance premium coefficientis 1.5. | n o
-'no’, 'n’.
If the driver is not trained, the
condition
is false, and the coefficient is 0.25.
Represents any dates, such as policy
effective date,
06/05/2010; .
. date of birth, and report date.
Date Used to operate with dates. 01/22/2014;))
If the date is defined as a text cell value,
11/07/95; 1/1/1991. .)
it is expected in the
format.

Byte, Character, Short, Long, Float, Biglnteger, and BigDecimal data types are rarely used in OpenL Tablets, therefore,
ranges of values are only provided in the following table. For more information about values, see the appropriate Java
documentation.

Data type | Min Max

Byte -128 127

Character | 0 65535

Short -32768 32767

Long -9223372036854775808 | 9223372036854775807
Float 1.5*10-45 3.481038

There is no range limits for Biglnteger and BigDecimal. Using these values can cause performance issues and thus must be
avoided.

Range Data Types

Range Data Types can be used when a business rule must be applied to a group of values. For example, a driver's
insurance premium coefficient is usually the same for all drivers from within a particular age group. In such situation, a
range of ages can be defined, and one rule for all drivers from within that range can be created. The way to inform OpenL
Tablets that the rule must be applied to a group of drivers is to declare driver's age as the range data type.

Openl Tablets supports the following range data types:

Type Description

Intended for processing whole numbers within an interval, for example, vehicle or driver age for
IntRange calculation of insurance compensations,
or years of service when calculating the annual bonus. Range borders are stored as Long values.

Used for operations on fractional numbers within a certain interval.
DoubleRange | For instance, annual percentage rate in banks depends on amount of deposit which is expressed as
intervals: 500 — 9,999.99; 10,000 — 24,999.99.

117 /156

Type Description

CharRange Used for processing character values within a predefined interval.

Used for processing dates within a predefined interval. Only default date format, such as 01/01/1999

DateRange .
or 01/01/1999 12:12:12, is supported.

Used for processing string values within a predefined interval. If a string contains numbers, they are
treated in a regular way.

StringRange For example, for a string range [A1..A3], A2 is within the range, and A22 is out of the range.
StringRange conditions can be defined in smart rules and smart lookups, while in simple rules and
simple lookups it is interpreted as String.

The following illustration provides a very simple example of how to use a range data type. The value of discount
percentage depends on the number of orders and is the same for 4 to 5 orders and 7 to 8 orders. A number of cars per
order is defined as IntRange data type. For a number of orders from, for example, 6 to 8, the rule for calculating the
discount percentage is the same: the discount percentage is 10.00% for BMW, 4.00% for Porsche, and 6.00% for Audi.

r, int numberofCars)
Rules - Disc

/fDescription
num bercf Cars brand

IntRange amountPerOrder CarBrand carBrand
Number of Orders

Double discountPercentage

Mo discount for any brand 0,00% 0,00% 0,00%
Min discount applied 1,00% 1,00% 1,00%
+ 1% discount 2,00% 2,00% 2,00%
Depends an car brand 5,00% 3,00% 4,00%

Depends on car brand 10,00% 4,00% 6,00%
Depends on car brand 15,00% 5,00% 8,00%

Usage of the range data type

Supported range formats are as follows:

Values for
Format Interval Example
IntRange

Mathematic definition for ranges
1 using square brackets

for included borders and round
brackets for excluded borders.

2 Mathematic definition for ranges with
two dots used instead of semicolon.

Mathematic definition for ranges with

3
a hyphen used instead of a
semicolon.

4

5

6

118 /156

Values for
Format Interval Example
IntRange

10

11

12

13

14

15

16

17

18

The following rules apply:

¢ Infinities in IntRange are represented as for -co for +oo.
* Using of ".." and "..." requires spaces between numbers and dots.

* Numbers can be enhanced with the ¢ sign as a prefix and K, I, & as a postfix, for example,

* For negative values, use the ‘-’ (minus) sign before the number, for example,

Void Data Type

Void is a special type that represents the absence of a value or lack of a specific type. It is often used as a return type for
functions that do not return a value or as a placeholder for empty parameters in function declarations. Essentially, void
signifies that there is no data or value associated with it.

In rules, use the void type when a rule must be executed but no value is expected to be returned.

Working with Functions

Data types are used to represent user data in the system. Business logic in rules is implemented using functions. Examples
of functions are the Sum function used to calculate a sum of values and Min/Max functions used to find the minimum or
maximum values in a set of values.

This section describes OpenL Tablets functions and provides simple usage examples. All functions can be divided into the
following groups:

e math functions

119/ 156

* array processing functions
* date functions

¢ String functions

¢ error handling functions

The following topics are included in this section:

® Understanding OpenlL Tablets Function Syntax

¢ Understanding Math Functions

® Understanding Date Functions

* Understanding Special Functions and Operators
¢ Null Elements Usage in Calculations

Understanding OpenL Tablets Function Syntax

This section briefly describes how functions work in OpenL Tablets.
Any function is represented by the following elements:

¢ function name or identifier, such as sum, sort, median
¢ function parameters
¢ value or values that the function returns

For example, in the expression, max is the rule or function name, (value1, value2) are function
parameters, that is, values that take part in the action. When determining value1 and value2 as 50 and 41, the given

function looks as and returns 50 in result as the biggest number in the couple.

If an action is performed in a rule, use the corresponding function in the rules table. For example, to calculate the best
result for a gamer in the following example, use the max function and enter max(score], score2, score3) in the C1 column.
This expression instructs OpenL Tablets to select the maximum value in the set. The contains function can be used to

determine the gamer level.

Subsequent sections provide description for mostly often used OpenL Tablets functions. For a full list of functions, see
Appendix B: Functions Used in OpenL Tablets.

Understanding Math Functions

Math functions serve for performing math operations on numeric data. These functions support all numeric data types
described in Working with Data Types.

The following example illustrates how to use functions in OpenL Tablets. The rule in the diagram defines a gamer level
depending on the best result in three attempts.

Rules String Gam erlevelEvaluation{Integer scorel, Integer score, Integer scored)
1l RETL
maxlscorel, score?, scored)
IntRange
BestResultEvaluation Gam erLevel
0-3 nowice
4-6 rnediurn
7-10 senior

An example of using the ‘max’ function
The following topics are included in this section:

® Math Functions Used in OpenL Tablets
® Round Function

120/ 156

Math Functions Used in OpenlL Tablets

The following table lists math functions used in OpenL Tablets:

Function | Description
Returns the smallest or biggest element in a set of elements of comparable type for an array or multiple
values.
min/max | The result type depends on the entry type. min/max(element1, element?, ...)
For example, if Date1= 01/02/2009 and Date2= 03/06/2008 are variables of the Date type,
returns 01/02/2009.
Adds all numbers in the provided array and returns the result as a number.
sum
Returns the arithmetic average of array elements. The function result is a floating value. avg(number1,
av
9 number?, ...) avg(array[])
duct Multiplies numbers from the provided array and returns the product as a number. product(number1,
roduc
P number?, ...) product(array[])
Returns the remainder after a number is divided by a divisor. The result is a numeric value and has the
same sign as the devisor.
mod
- is a numeric value which’s remainder must be found.
- is the number used to divide the
If the divisor is 0, the mod function returns an error.
sort Returns values from the provided array in ascending sort. The result is an array. sort(array[])
d Rounds a value to a specified number of digits. For more information on the ROUND function, see Round
roun
Function.

Round Function

The ROUND function is used to round a value to a specified number of digits. For example, in financial operations, users
may want to calculate insurance premium with accuracy up to two decimals. Usually, a number of digits in long data types,
such as Double, must be limited. The ROUND function allows rounding a value to a whole number or to a fractional
number with limited number of signs after decimal point. In case of rounding to a whole number, for the round(number)
and round (number, String) functions, the type of the returned value is always Integer, except for BigDecimal input value
which is returned as BigInteger.

The ROUND function syntax is as follows:

Syntax Description

Rounds to the whole number and returns Integer or BigInteger.

Rounds to the fractional number. is a number of digits after decimal point.

Rounds to the whole number considering the specified rounding mode. The result is
Integer or BigInteger.
An example of a string value is

121 /156

Syntax Description

Rounds to the fractional number and enables to get results different from usual
mathematical rules:

- The first stands for a number of digits after decimal point.

- The second stands for a rounding mode represented by a constant, for example,

The corresponding string value, such as , can be used instead of the second

Rounds to the fractional number considering the specified rounding mode.

The following topics are included in this section:

¢ round(number)
* round(number,int)

(

(

* round(number,String)

* round(number,int,int)
(

* round(number,int,String)
round(number)

This syntax is used to round to a whole number. The following example demonstrates function usage:

Spreadsheet Double roundToWheleNumber (Double value

Rounding =round(value)

Rounding to integer

Test roundToWholeNumber roundToWholeNumbkerTest

id value res
Test 1D Test Value Test Result
Testl 32,283 32
Test2 42.285 42
Test3 52.285 52
Testd 62,283 B2
TestS 72.285 72
Testb 52285 &2
Test? 92.285 92
TestB 102.285 102
Testd 112.285 112

Test table for rounding to integer

round(number,int)

This function is used to round to a fractional number. The second parameter defines a number of digits after decimal point.

122 /156

SmartRules Double round [Double value)

= round (value, 2)

Rounding to a fractional number

Testmethod round roundTest
description walue _res_
TestID TestType Test Result

Testl 34,285 34.29
Test2 43 385 4339
Test3 R385 R32.39
Testd 62,285 62.29
Teszth 74.285 74.29
Testh 82,285 g82.29
Teat7 92,285 9229
Testd 102,285 102.29
Test9 112,285 112.29

Test table for rounding to a fractional number

round(number,String)

This syntax is used to round to a whole number, where the String value denotes the rounding mode as described in the
following table:

Mode name Description

up Rounding mode to round away from zero.

DOWN Rounding mode to round towards zero.

CEILING Rounding mode to round towards positive infinity.

FLOOR Rounding mode to round towards negative infinity.

HALF UP Rounding mode to round towards the nearest neighbor unless both neighbors are equidistant, in
- which case round up.

HALF_DOWN Rounding mode to round towards the nearest neighbor unless both neighbors are equidistant, in

which case round down.

Rounding mode to round towards the nearest neighbor unless both neighbors are equidistant, in
HALF_EVEN which case,
round towards the even neighbor.

Rounding mode to assert that the requested operation has an exact result, hence no rounding is
UNNECESSARY

necessary.

An example is as follows:

round(32.285,DOWN)=32

Note: In the code, both CEILING and RoundingMode.CEILING formats are acceptable.

123 /156

SimpleRules Integer roundTest3 [Double value) Test roundTest3

Value Rate _description_ [value _res_
=round{value, DOWN) Test ID TestType|Test Result
Testl 32.2B5 32

Usage of the round(number,String) format with the DOWN rounding mode

round(number,int,int)

This function allows rounding to a fractional number and get results by applying different mathematical rules. The
following parameters are expected:

¢ Number to round
® The first stands for a number of digits after decimal point.
* The second stands for a rounding mode represented by a constant, for example, - round_ , 4-

The following table contains a list of the constants and their descriptions:

Constant | Name Description

0 up Rounding mode to round away from zero.

1 DOWN Rounding mode to round towards zero.

2 CEILING Rounding mode to round towards positive infinity.

3 FLOOR Rounding mode to round towards negative infinity.

4 HALE UP Rounding mode to round towards the nearest neighbor unless both neighbors are
- equidistant, in which case round up.

c HALF_DOWN Rounding mode to round towards the nearest neighbor unless both neighbors are

equidistant, in which case round down.

Rounding mode to round towards the nearest neighbor unless both neighbors are
6 HALF_EVEN equidistant, in which case,
round towards the even neighbor.

Rounding mode to assert that the requested operation has an exact result, hence no
7 UNNECESSARY o7
rounding is necessary.

For more information on the constants representing rounding modes, see
https://docs.oracle.com/en/java/javase/11/docs/api/constant-values.html#java.math.BigDecimal. ROUND_HALF_DOWN.

For more information on the constants with examples, see
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/math/class-use/RoundingMode.html, Enum Constant
Details section.

The following example demonstrates how the rounding works with the DOWN constant.

SimpleRules Double roundTestl (Double value) Test roundTestl
Value Rate _description_ [value _res_
=round{value,2,1) TestID TestType|Test Result
Testl 32285 32.28

Usage of the round(number,int,int/String) format with the DOWN rounding mode

124 /156

https://docs.oracle.com/en/java/javase/11/docs/api/constant-values.html#java.math.BigDecimal.ROUND_HALF_DOWN
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/math/class-use/RoundingMode.html

round(number,int,String)

This function allows rounding to a fractional number and get results by applying different mathematical rules. The
following parameters are expected:

* Number to round
. stands for a number of digits after decimal point.
. stands for a rounding mode as described in round(number,String).

An example is as follows:

round(32.285, 2, DOWN)=32.28

SimpleRules Double roundTest2 (Double value) Test roundTest2
Value Rate _description_ [value _res
=round{value,2 DOWMN) Test 1D TestType | Test Result
Testl 32285 32.28

Usage of the round(number,int,int/String) format with the DOWN rounding mode
Understanding Date Functions

Openl Tablets supports a wide range of date functions that can be applied in the rule tables. The following date functions
return an Integer data type:

Function Description
Returns the number of months since AD.
absMonth
Returns the number of quarters since AD as an integer value.
absQuarter
Returns the date. The following options are available:
Dat - Date(year, month, day, hours, minutes)
ate
- Date(year, month, day, hours, minutes, seconds)
- Date(year, month, day, hours, minutes, seconds, milliseconds)
Takes a date as input and returns the day of the week on which that date falls.
dayOfWeek Days in a week are numbered from 1 to 7 as follows: 1=Sunday, 2=Monday, 3 = Tuesday, and so on.

Takes a date as input and returns the day of the month on which that date falls. Days in a month are
dayOfMonth numbered from 1 to 31.

Takes a date as input and returns the day of the year on which that date falls. Days in a year are
dayOfYear numbered from 1 to 365.

h Returns the hour of the day in 12 hour format for an input date.
our

Returns the hour of the day in 24 hour format for an input date.
hourOfDay

125/ 156

Function

Description

isLeap

Identifies whether the year is a leap year. The following options are available:
- isLeap(Date) - checks whether the provided date is in the leap year.
- isLeap(Integer) - checks whether the provided year is a leap year.

minute

Returns a minute (0 to 59) for an input date.

second

Returns a second (0 to 59) for an input date.

setTime

Sets time or date. The following options are available:

- setTime(Date, hours, minutes) - sets time in hh:mm:xx.xxx without changing the date.

- setTime(Date, hours, minutes, seconds) - sets time in hh:mm:ss.xxx without changing the date.

- setTime(Date, hours, minutes, seconds, milliseconds)- sets time in hh:mm:ss.ccc without changing
the date.

- setDate(Date, year, month, day)- sets the date in yyyy-mm-dd without changing the time.

weekOfMonth

Takes a date as input and returns the week of the month within which that date is. Weeks in a month
are numbered from 1 to 5.

weekOfYear

Takes a date as input and returns the week of the year on which that date falls. Weeks in a year are
numbered from 1 to 54.

The following date function returns a String data type:

Function

Description

amPm(Date d)

Returns Am or Pm value for an input date.

The following figure displays values returned by date functions for a particular input date specified in the MyDate field.

Day of week [=dayOfWeek{MyDate)

Spreadsheet SpreadsheetResult testDateFunctions|{Date MyDate)

Day of month [=dayOfMonth(MyDate)

Day of year [=dayOfYear(MyDate)

Week of year |=weekOfY ear{MyDate)

Hour of day |=hourOfDay(WyDate)

MyDate

Result

12/19/2012 07:13 [Siep

Dy of week
Day of month
Day of year
ek of year
Hour of day

— [
(o=l

[n]
T
e

— | [T
=

Date functions in OpenlL Tablets

The following decision table provides a very simple example of how the function can be used when the
returned value, Risk Factor, depends on the day of the week.

126 / 156

Rules Double RiskFactor3 (Date MyDate)
c1 RET1
dayOfeek{MyDate)

IntRange

[2..9] 5% Monday-to-Wednesday RF
B 85% Friday RF
100% Week-end RF

RiskFactor3Test

Date Expected Result
1z/21/2012 0.85 o 0.85
12/22/2012 1 o 1
1z/19/2012 0.75 o 075

A risk factor depending on a day of the week
Understanding Special Functions and Operators

Openl Tablets supports a variety of different special functions and syntax to make rules creation easier and more
convenient for business users.

The following topics are included in this section:

® Error Function

® Ternary Operator

¢ Performing Operations via Formula
* Pattern-Matching Function

Error Function

The ERROR function is used to handle exceptional cases in a rule when an appropriate valid returned result cannot be
defined. The function returns a message containing problem description instead and stops processing. The message text is
specified as the error function parameter.

In the following example, if the value for a coverage limit of an insurance policy exceeds 1000$, a rule notifies a user about
wrong limit value and stops further processing.

SimpleRules Double GoveragePremium | Integer limit)
Coverage .
Limmit Premium
<= 100 g0
101-500 $15
501-900 545
901 - 1000 £60
= 1000 = error ("coverage limit can't be more than 10005")

Usage of the ERROR function

Alternatively, a custom error with custom error message can be defined as arguments using the
function. The expected REST response is as follows:

127 / 156

"code": "cdo1l",
"message": "User message"

Ternary Operator

?: is a ternary operator that is a part of the syntax for simple conditional expressions. It is commonly referred to as the
conditional operator, inline if (iif), or ternary if.

Formula returns value1 if condition expression is true, otherwise, value2.
:(value2) part is optional. If it is not defined, null is returned if the condition is false.

An example of a ternary operator is as follows:

I ouble GommissionGalc | Commission
Step Value
Amount = useCensus ? percentAmount : flatAmount

Ternary operator example

In if-then expression, this example stands for the following:

If (useCensus == true) then { Amount step value = percentAmount} else { Amount step value = flatAmount}.
For more information on ternary operators, see https://en.wikipedia.org/wiki/Ternary_operation.

To create more complex conditional expressions, use decision tables.
Performing Operations via Formula

A user can write several operations in a cell's formula or in expression statement of the Decision table by separating each
operation with the ;' sign. The result of the last operation is defined as a returned value of the cell as follows:

In practice, it is widely used when a user needs to store calculated values in the input object fields by using the following
syntax:

or

In the following example, the Age step calculates the age and stores the result in the vehicleAge field of the input object
vehicle, the Scoring step calculates several scoring parameters, stores them in the scoring object, and returns the object
with updated fields as a result of the step:

DetermineVehiclePremium

Step Value

Age = yehicleAge = CurrentYear() - year

TheftRating = VehicleThefiRating (bodyType, price)

Seoring = scoring_eligibility = "Eligible”; scoring theftRating = $TheftRating: scoring

128 /156

https://en.wikipedia.org/wiki/Ternary_operation

Example of performing operations via formula
Pattern-Matching Function

A pattern-matching function allows verifying whether a string value matches the predefined pattern. For example, for
emails, phone numbers, and zip codes the following function can be used:

The result is a Boolean value indicating whether the string equals the pattern.

The function provides a versatile tool for string comparison. The pattern-matching feature allows a user to match
each character in a string against a specific character, a wildcard character, a character list, or a character range. The
following table lists the characters allowed in a pattern and describes what they match:

Characters in pattern | Meaning

? One character.

* Zero or multiple characters.
One digit.

@ One letter.

[a-k] One character from the set.
['v-zZ] One character not from the set.
Pattern+ Pattern applied at least once.
(7] Match to '?'.

[*1 Match to "*'.

[#] Match to '#'.

(@] Match to '@".

[+] Match to '+".

M Match to '!".

" NOT match to '!".

(1M Match to '!" or '1".

1] NOT match to '1".

[-1-3] Match to '-', "1, '2, '3".

Examples are as follows:
-> TRUE
-> FALSE
-> TRUE

-> FALSE

Null Elements Usage in Calculations

129 /156

This section describes how null elements (an element with an empty value) are processed in calculations.

For adding and subtracting, is interpreted as
For multiplying and dividing, it is interpreted as . That is, if and
, that is, ,
Environment table.
The following diagrams demonstrate this rule.
SmartRules Double Operations (String operationType, Double a, Double b)
Operation Result
SUBSTRUCT =a-b
ADD =ath
DIVIDE =a,/b
MULTIFY =a*h
PO =a**h

Rules for null elements usage in calculations

The next test table provides examples of calculations with null values.

Test Operationz OperationsTest
operationType 3 b 2z
Operation A B Result
SUBSTRUCT 50 3.0 20
SUBSTRUCT 5.0 5.0
SUBSTRUCT 3.0 30
SUBSTRLUCT
ADD 50 3.0 80
ADD 50 50
ADD 3.0 30
ADD
DIVIDE 2.0 4.0 20
DIVIDE 2.0 80
DIVIDE 4.0 025
DIVIDE
MULTIPY 8.0 4.0 320
MULTIFY 20 a0
MULTIFY 40 4.0
MULTIPY
POW 20 3.0 80
POW 20 10
POW 3.0
POW

Test table for null elements usage in calculations

If all values are null, the result is also null.

Working with Projects

LIf must be interpreted as
must be added to the

This chapter describes creating an OpenlL Tablets project. For more information on projects, see Projects.

The following topics are included in this chapter:

® Project Structure
* Rules Runtime Context Management from Rules

130/ 156

* Project, Module, and Rule Dependencies
® Project Localization

Project Structure

The best way to use the OpenL Tablets rule technology in a solution is to create an OpenL Tablets project in OpenL Studio.
A typical OpenL Tablets project contains Excel files which are physical storage of rules and data in the form of tables. No
Excel functionality, such as formulas and tab references, is used in OpenL Tablets. On the logical structure level, Excel files
represent modules of the project where each Excel file is considered as one module.

When creating a project, the decision if and how to divide tables into one or many Excel files, or modules, is driven by the
idea of how to present business logic in the most structural way. Generally, it depends on the project size. For a small
project, all tables can fit in one file. For a bigger sized project, it is a good practice to divide tables per file according to
their business purposes: datatype tables in one file, lookup tables in another file, decision tables and spreadsheet tables in
the third file, and tests in the fourth file and so on. The number of files, or module, per project is unlimited.

Additionally, a project can contain , Java classes, JAR files, Groovy scripts, according to developer's needs, and
other related documents, such as guides and instructions.

Thereby, the structure can be adjusted according to the developer's preferences, for example, to comply with the Maven
structure.

Note for experienced users: The project file is a rules project descriptor that contains project and
configuration details. For instance, a user may redefine a module name there that is the same as a name of the
correspoturns a copy of the current runtime context.nding Excel file by default. When updating project details via OpenL
Studio, the file is automatically created or updated accordingly.

For more information on configuring see Openl Tablets Developers Guide > Rules Project Descriptor.
The following topics are included in this section:

* Multi Module Project
* Creating a Project
* Project Sources

Multi Module Project

Projects with several rule modules are called multi module projects. All modules inside one project have mutual access to
each other's tables. It means that a rule or table of a module of a project is accessible and can be referenced and used
from any rule of any module of the same project.

When there are many modules, OpenlL Tablets engine may start processing modules from any of them. That is why it is
important to specify the root file and compilation order of modules in a project. For this purpose, module dependencies
are used.

To run a rule table from another project, connect projects by dependencies as described in Project, Module, and Rule
Dependencies.

Creating a Project

The simplest way to create an Openl Tablets project is to create a project from template in the installed OpenL Studio.

A new project is created containing simple template files that users can apply as the basis for a custom rule solution.

Project Sources

131 /156

https://openldocs.readthedocs.io/en/latest/documentation/guides/developer_guide#rules-project-descriptor

Project sources can be added from developer created artifacts, such as jars, Java classes, and Groovy scripts, which contain
a reference to the folder with additional compiled classes to be imported by the module. For that, a rules project must
contain the file created in the project root folder.

Saved classpath is automatically added to the file. After that, classpath can be used in rules. Classpath can
indicate both specific jar and folder with libraries. The asterisk * symbol can be used for the varying part in the classpath.

<classpathz>

<entry path="."/>

<entry path="auto-rating-model.jar" />
<entry path="1ib/%. jar" />
</Classpaths

Classpath description in the rules.xml

To use a classpath in dependent projects, place a common classpath inside the main dependency project and then reuse it
in all dependent projects.

Note: All sources defined for the project are loaded by the same source loader classloader. In other words, Java classes or
Groovy scripts from one source can be used by classes or Groovy script from another source. Datatype classes or any other
classes generated by rules are not visible in source loader classloader. In other words, any classes generated by rules are
not visible in Java classes or Groovy script loaded by source loader classloader but can be loaded via Java reflection via the
current thread classloader.

Rules Runtime Context Management from Rules

The following additional internal methods for modification, retrieving, and restoring runtime context support work with
runtime context from OpenlL Tablets rules:

Method Description

Returns a copy of the current runtime context.

Method Double calcRateForDate (Policy

policy, Date date)

TRulezRuntimeContext context = getContext();
getContext() context.currentDate = date;
setContext(context);

refurn calcRate{policy);

Using the getContext function in a method

emptyContext() Returns new empty runtime context.

setContext(IRulesRuntimeContext . . .
text) Replaces the current runtime context with the specified one.
contex

132 /156

Method

Description

modifyContext(String propertyName,
Object propertyValue)

Modifies the current context by one property: adds a new one or replaces
by specified
if property with such a name already exists in the current context.

Rules Double calcRateForState(int homeIndex, Policy policy)

Al

modifyContext{"uzState", stateToSet) result

UsStatesEnum stateToSet Double result

=policy.home[homeIndex].state =calc(policy)

Using modifyContext in a rules table

Note: All properties from the current context remain available after
modification,
so it is only one property update.

restoreContext()

Discharges the last changes in runtime context.

The context is rolled back to the state before the last setContext or
modifyContext.

|

Method Double calcAutoRateForMO (Policy

policy)

TRulesRuntimeContext context = emptyContext();
context.lob = "auto';

context.usState = UsStatesEmumn. MO,
setContext(context);

Double res = calcRate(policy);

restoreContext();

return res;

Using restoreContext in a method table

ATTENTION: All changes and rollbacks must be controlled manually: all changes applied to runtime context will remain

after rule execution. Make sure that the changed context is restored after the rule is executed to prevent unexpected

behavior of rules caused by unrestored context.

Note: The

work with runtime context from rules:

impaort org.openl_rules context

Project, Module, and Rule Dependencies

package must be imported as illustrated in the following figure so that a user can

Dependencies provide more flexibility and convenience. They may divide rules into different modules and structure them

in a project or add other related projects to the current one. For example, if a user has several projects with different

133 /156

modaules, all user projects share the same domain model or use similar helpers rules, and to avoid rules duplication, put the

common rules and data to a separate module and add this module as dependency for all required modules.

Term Description
Dependency .
Module that is used as a dependency.
module
Dependency . .
. Project that is used as a dependency.
project

Root module

Module that has dependency declaration, explicit via environment or implicit via project dependency,
to replace with another module.

Root project

Project that has dependency declaration to replace with another project.

The following topics are included in this section:

* Dependencies Description

* Dependencies Configuration

* Import Configuration

* Components Behavior

Dependencies Description

The module dependency feature allows making a hierarchy of modules when rules of one module depend on rules of

another module. As mentioned before, all modules of one project have mutual access to each other's tables. Therefore,

module dependencies are intended to order them in the project if it is required for compilation purposes. Module

dependencies are commonly established among modules of the same project. An exception is as follows.

The following diagram illustrates a project in which the content of Module_1 and Module_2 depends on the content of

Module_3, where thin black arrows are module dependencies:

Project |

Example of a project with modules hierarchy

In addition, project dependency enables accessing modules of other projects from the current one:

134 /156

All Modules

Example of a project dependency with all modules

The previous diagram displays that any module of Project1 can execute any table of any module of Project2: thick gray
arrow with the All Modules label is a project dependency with all dependency project modules included. This is equivalent
to the following schema when each module of Project1 has implicit dependency declaration to each module of Project2:

;
:'-.
[

Interpretation of a project dependency (with all modules)

The project dependency with the All Modules setting switched on provides access to any module of a dependency project
from the current root project.

Users may combine module and project dependencies if only a particular module of another project must be used. An
example is as follows:

135/ 156

Example of a project and module dependencies combined

In the example, for defined external Project2, only the content of Module2_2 is accessible from Project1: thick gray arrow
without label is a project dependency which defines other projects where dependency module can be located.

If the project dependency does not have the All Modules setting enabled, dependencies are determined on the module

level, and such project dependencies serve the isolation purpose thus enabling getting a dependency module from
particular external projects.

136 /156

X

Manage Dependencies

Project Name All Modules

J poL1

v GPLU Cash Offer |

(J GPLU Member Record Rating

v GPLW Cash Offer |

(J GPLW Member Record Rating

O Tllustration
() offer API

(J pL calculation Algs

¥ PL Product Model |

Save Cancel

Defining dependencies for projects in Openl Studio

After adding a dependency, all its rules, data fields, and data types are accessible from the root module. The root module
can call dependency rules.

Dependencies can also be used to call a specific rule from another project that have a similar structure or similar approach
to rules model naming, for example, datatype table naming or using rules with the same or similar signature. To add a
dependency rule, use the following syntax:

“Project’ .tableName()
“Project/module’ .tableName()

Project.tableName() must be used if the table name is unique within the whole project. Project/module.tableName()
must be used if the table name is not unique among the modules.

137 /156

SmartRules AnySpreadsheetResult FilterLoanConfigAP! { String productCd, String planCode, StatelJS situsState, Date policyEffectiveDate, Date startPeriod)
productCd Formula

UL ="GPLU Cash Offer” Interestloa guration(planCode, situsState, policyEffectiveDate, startPeriod)

WL ="GPLW Cash Offer” Interestl oanConfiguration(planCode, situsState, policyEffectiveDate, startPeriod)

Example of calling a rule from another project

This syntax is applicable when there is a dependency on a project and the All Modules option is disabled. It allows
accessing a specific rule of a different project while all the other tables remain invisible.

Dependencies Configuration

This section describes dependencies configuration.

1. To add a dependency to a module, add the instruction to a configuration table as described in Configuration Table
using the dependency command and the name of the module to be added.

A module can contain any number of dependencies. Dependency modules can also have dependencies. Avoid using
cyclic dependencies.

Environment

dependency|PL Product Model

Example of configuring module dependencies

2. To configure a project dependency, in a rules project descriptor, in the file created in the project root
folder, in the Dependency section, for the name tag used for defining the dependency project name, set the
autolncluded tag to true or false.

7 = Sy SR

<dependencies>
<dependency>
<name>Project Name</name>
<autoIncluded>false</autolncluded:-
< /dependency>
</dependencies>

e L S AR S AR o S L > WP

Example of configuring project dependencies — fragment of rules.xml
For more information on configuring rules.xml, see OpenL Tablets Developers Guide > Rules Project Descriptor.

By a business user, project dependencies are easily set and updated in OpenL Studio as described in OpenL Studio Guide >
Defining Project Dependencies.

A project can contain any number of dependencies. Dependency projects may also have dependencies. Avoid cyclic
dependencies.

When Openl Tablets is processing a module, if there is any dependency declaration, it is loaded and compiled before the
root module. When all required dependencies are successfully compiled, OpenL Tablets compiles the root module with
awareness about rules and data from dependencies.

Import Configuration

Using import instructions allows adding external rules and data types from developer created artifacts, such as jars, Java
classes, and Groovy scripts, located outside the Excel based rule tables. In the import instruction, list all Java packages, Java
classes, and libraries that must become accessible in the module.

138 /156

https://openldocs.readthedocs.io/en/latest/documentation/guides/developer_guide#rules-project-descriptor
https://openldocs.readthedocs.io/en/latest/documentation/guides/webstudio_user_guide#defining-project-dependencies

Import configuration is defined using the Environment table as described in Configuration Table. Configuration can be
made for any user mode, single-user mode or multi-user mode. For proper import configuration, classpath must be
registered in project sources as described in Project Sources.

In the following example, the Environment table contains an import section with reference to the corresponding Java
package:

unport com.generated rating mta

Example of configuring module import

Note: For importing packages or classes, the same syntax is used. Firstly, OpenL Tablets tries to import the specified class.
If it is not found, the system identifies it as a package and imports all classes from the specified package.

To import the library to the module, the following syntax is used:

org.packagename.ClassName.*

It adds all static methods from the corresponding class. A user can call these methods inside OpenL rules directly without
indicating the class name. An example is using instead of

Common Java imports can be placed only into the main, or dependency, project or module. When working with a
dependent project, there is no need to specify Import in this project. Import data is retrieved directly from the dependency
project. Dependency instruction makes all import instructions applied to the dependent module.

Components Behavior

All OpenL Tablets components can be divided into three types:

® Rules in rule tables as described in Decision Table, Spreadsheet Table, Method Table, TBasic Table.
¢ Data in data tables as described in Data table.
¢ Data types in data type tables as described in Datatype Table.

The following table describes behavior of different OpenL Tablets components in dependency infrastructure:

Operations or

Rules Datatypes Data
components
Can access components
ina

Yes. Yes. Yes.

root module from
dependency.

139/ 156

Operations or
components

Rules

Datatypes

Data

Both root and
dependency
modules contain

a similar component.

1. Rules with the same signature and
without

dimension properties: duplicate
exception.

2. Methods with the same signature
and with a number of dimension
properties:

wrapped by Method Dispatcher.

At runtime, a method that matches
the runtime

context properties is executed.

3. Methods with the same signature
and with

property active:

only one table can be set to true.
Appropriate validation checks

this case at compilation time.

Duplicate exception.

Duplicate exception.

None of root and
dependency
modules contain the
component.

There is no such method
exception during compilation.

There is no such data
type

exception during
compilation.

There is no such field
exception during
compilation.

Project Localization

This section introduces project localization and describes how to enable it in the OpenL Tablets project.

Introducing Project Localization

To enable the i18n localization, the msg(String code, Object... params) function and new locale property are introduced.

The msg(String code, Object... params) function reads localization message bundles in the i18n format. All localization

bundles are stored in the OpenL Tablets project, the i18n folder. The name of the localization bundle matches the

following pattern:

where is a placeholder.

Examples ordered by descending priority are as follows:

* message_no_NO_NY.properties — localization bundle for the Norwegian language, Norway country, Nynorsk form.

* message_de_LU.properties — localization bundle for the German language, Luxembourg country.

* message_de.properties - localization bundle for the German language.

* message.properties — default localization bundle applied to all countries and languages. It has the lowest priority.

Localization bundles files are key-value plain text files where keys and values are separated with = character, for example,

For more information on supported locales, see JDK 11 Supported Locales.

To support the i18n localization, a new locale property of the java.lang.Locale type is added to IRulesRuntimeContext to

support i18n localization. When the msg(String code, Object... params) function is invoked, the current locale is retrieved

from IRulesRuntimeContext and the list of message bundles is configured based on it.

140/ 156

https://www.oracle.com/java/technologies/javase/jdk11-suported-locales.html

Enabling Localization in the OpenL Tablets Project

To enable location in the OpenL Tablets project, proceed as follows:
1. In the OpenL Tablets project, create the i18n folder.

2. In this folder, create a default message.properties file with the following contents:

greetings = Hello, {0}.
farewell = Goodbye, {0}.
inquiry = How are you?

When a default message bundle is created, its messages are translated into various languages. For example, for
French, the message_fr_FR.properties properties file is created and its contains the following lines:

greetings = Bonjour, {0}.
farewell = Au revoir, {0}.
inquiry = Comment allez-vous?

Note that the values on the right are translated while the keys on the left size remain the same. It is important to
maintain the keys without alterations as they serve as references when rules retrieve the translated text.

3. Define the required locale in the runtime context property. By default, OpenL Rule Services automatically populates
the ‘'locale’ context property with the value from the Accept-Language HTTP header in the request (RFC3282).

Alternatively, the ‘locale’ context property can be explicitly specified in the request body if needed.

4. Define a localization message for this locale:

"= msg("greetings", "John Smith") // Bonjour, John Smith
'= msg("farewell", "John Smith") // Au revoir, John Smith
"= msg("inquiry") // Comment allez-vous?

In this case, all localization messages are retrieved from message_fr_FR.properties. If the locale is set up for another
language, for example, uk_UA, but the appropriate message bundle is not created, the properties are retrieved from the

default file message.properties.

**Note: **The message.properties file must be encoded using the UTF-8 character set. Use the following tool for quick

encoding: https://native2ascii.net/.

Appendix A: BEX Language Overview

This chapter provides a general overview of the BEX language that can be used in OpenL Tablets expressions. The following

topics are included in this chapter:

* Introduction to BEX

e Keywords

¢ Simplifying Expressions

¢ Operators Used in OpenL Tablets

Introduction to BEX
141/ 156

https://en.wikipedia.org/wiki/UTF-8
https://native2ascii.net/

BEX language provides a flexible combination of grammar and semantics by extending the existing Java grammar and
semantics presented in the configuration using new grammar and semantic concepts. It enables users to

write expressions similar to natural human language.

BEX does not require any special mapping; the existing Java business object model automatically becomes the basis for
open business vocabulary used by BEX. For example, the policy.effectiveDate Java expression is equivalent to the
Effective Date of the Policy BEX expression.

If the Java model correctly reflects business vocabulary, no further action is required. Otherwise, custom type-safe mapping
or renaming can be applied.

Keywords

The following table represents BEX keyword equivalents to Java expressions:

Java expression | BEX equivalents

Because of these keywords, name clashes with business vocabulary can occur. The easiest way to avoid clashes is to use
upper case notation when referring to model attributes because BEX grammar is case sensitive and all keywords are in

lower case.

For example, assume there is an attribute called . If it is referred to as is less than coverage
limit, a name clash with keywords is less than occurs. The workaround is to refer to the attribute as Is Less Than

Coverage Limit.
Simplifying Expressions

Unfortunately, the more complex an expression is, the less comprehensible the natural language expression becomes in
BEX. For this purpose, BEX provides the following methods for simplifying expressions:

* Notation of Explanatory Variables
¢ Uniqueness of Scope

Notation of Explanatory Variables

BEX supports a notation where an expression is written using simple variables followed by the attributes they represent. For
example, assume that the following expression is used in Java:

142 / 156

The expression is hard to read. However, it becomes much simpler if written according to the notion of explanatory

variables as follows:

(A -M) / M>X, where

A - Agreed Value of the vehicle,
M - Market Value of the vehicle,
X - Limit Defined By User

This syntax resembles the one used in scientific publications and is much easier to read for complex expressions. It

provides a good mix of mathematical clarity and business readability.

Uniqueness of Scope

BEX provides another way for simplifying expressions using the concept of unique scope. For example, if there is only one

policy in the scope of expression, a user can write effective date instead of effective date of the policy. BEX

automatically determines uniqueness of the attribute and either produces a correct path or emits an error message in case

of ambiguous statement. The level of the resolution can be modified programmatically and by default equals 1.

Operators Used in OpenL Tablets

The full list of OpenL Tablets operators in order of priority is as follows:

Operator

Description

Simple assignment operator. C = A + B will assign value of A + B into C.
Chaining the assignment operator is possible to assign a single value to multiple
variables: C = A = B.

Add and assignment operator.
It adds right operand to the left operand and assigns the result to left operand.
C+=AisequivalenttoC=C+ A

Subtract and assignment operator.

It subtracts the right operand from the left operand and assigns the result to left
operand.

C-=AisequivalenttoC=C-A.

Multiply and assignment operator.

It multiplies the right operand with the left operand and assigns the result to left
operand.

C*= AisequivalenttoC = C*A.

Divide and assignment operator.

It divides the left operand with the right operand and assigns the result to left
operand.

C/=AisequivalenttoC=C/A.

%=

Deprecated. Use mod(x, y) math function instead.
Remainder and assignment operator.

It divides and takes the remainder using two operands and assigns the result to left

operand.
C %= Ais equivalentto C = C % A.

Conditional operator

143 /156

Operator

Description

Conditional, or ternary, operator that takes three operands and is used as shortcut for
if-then-else statement.

If is true, the operator returns the value of the expression;
otherwise, it returns the value of

Boolean OR

|| or "or" Logical OR operator. If any of the two operands are true, the condition becomes true.
Boolean AND
&& or "and" Logical AND operator. If both the operands are true, the condition becomes true.
Equality
== Equality operator checks if the values of two operands are equal.
| Inequality operator checks if the values of two operands are equal.
=or <>
If values are not equal, the condition becomes true.
Strict equality operator checks if the values of two operands are equal without
==== considering inaccuracy of float point values.
If values are equal strictly, the condition becomes true.
Strict inequality operator checks if the values of two operands are equal regardless of
=== inaccuracy of float point values.
If values are not equal strictly, the condition becomes true.
String equality operator checks whether values of two operands are equal.
string== First, letter parts are compared, and if they are equal, numeric parts are compared, as

if these are numbers, and not text.

string<> or string!=

String inequality operator checks if the values of two operands are equal.

If the values are not equal, the condition becomes true.

First, letter parts are compared, and if they are equal, numeric parts are compared, as
if these are numbers, and not text.

Relational

Less than operator checks if the value of the left operand is less than the value of the
<

right operand.

Greater than operator checks if the value of the left operand is greater than the value
>

of right operand.

Less than or equal to operator checks if the value of left operand is less than or equal
<=

to the value of right operand.

Greater than or equal to operator checks if the value of the left operand is greater
>=

than or equal to the value of right operand.

Strict less than operator checks if the value of the left operand is less than the value of
<== right operand

without considering inaccuracy of float point values.

Strict greater than operator checks if the value of the left operand is greater than the
>== value of right operand

without considering inaccuracy of float point values.

144 /156

Operator

Description

Strict less than or equal to operator checks if the value of the left operand is less than

<=== or equal to the value of right operand
without considering inaccuracy of float point values.
Strict greater than or equal to operator checks if the value of the left operand is

>=== greater than or equal to the value
of right operand without considering inaccuracy of float point values.
String less than operator checks if the value of the left operand is less than the value

) of the right operand.

string< . . .
First, letter parts are compared, and if they are equal, numeric parts are compared, as
if these are numbers, and not text.
String greater than operator checks if the value of the left operand is greater than the

. value of right operand.

string> .))
First, letter parts are compared, and if they are equal, numeric parts are compared, as
if these are numbers, and not text.
String less than or equal to operator checks if the value of left operand is less than or

i equal to the value of right operand.

string<=

g First, letter parts are compared, and if they are equal, numeric parts are compared, as

if these are numbers, and not text.
String greater than or equal to operator checks if the value of the left operand is

i greater than or equal to the value of right operand.

string>=

g First, letter parts are compared, and if they are equal, numeric parts are compared, as

if these are numbers, and not text.

Additive

+ Addition operator adds values on either side of the operator.

Subtraction operator subtracts right-hand operand from left-hand operand.

Multiplicative

*

Multiplication operator multiplies values on either side of the operator.

/ Division operator divides left-hand operand by right-hand operand.
o Deprecated. Use mod(x, y) math function instead. Remainder operator divides left-
° hand operand by right-hand operand and returns remainder.

Power
Deprecated. Use pow(x, y) math function instead.

* Exponentiation operator returns the result of raising left-hand operand to the power
right-hand operand.

Unary

+ Unary plus operator precedes its operand and indicates positive value.

Unary negation operator precedes its operand and negates it.

145 /156

Operator Description

Deprecated. Use x = x + 1 expression instead.

Increment operator increments its operand (increases the value of operand by 1) and
returns a value.

If a postfix with an operator is used after an operand (for example, x++), it returns the
value before incrementing.

++
For instance, x = 3; y = x++; givesy = 3, x = 4.

If a prefix with operator is used before an operand (for example, ++x), it returns the
value after incrementing.
Forinstance, x = 3; y = ++x; givesy = 4, x = 4.

Deprecated. Use x = x — 1 expression instead.

Decrement operator decrements its operand (decreases the value of operand by 1)
and returns a value.

If a postfix with an operator is used after an operand (for example, x--), it returns the
value before decrementing.

For instance, x = 3; y = x--; givesy = 3, x = 2.

If a prefix with an operator is used before an operand (for example, ++Xx), it returns the
value after decrementing.
For instance, x = 3;y = --x; givesy = 2, x = 2.

| ¢ Logical NOT operator reverses the logical state of its operand.
l'orno
If a condition is true, then Logical NOT operator will make it false.

(Datatype) x Cast operator converts the operand value x to the specified type.

When comparing elements of different types, such as an array and an element of the array, or different datatypes, or string
and integer, a warning message is displayed. An example is as follows:

2 @& E x 2 @
Edit Open Copy Remove Run Trace Create Test
Problems -

Warning: Compared elements have different types ('java.lang.5tring[]’, Java.lang.5tring”). Comparing these types always returns true.

banks.bankRatings[3=lect all having rating == "&"] &

String{] rating

Fom

Suppose you're working with a list of bank ratings stored in an array and you want to select banks ratings with a value of
"A". If you mistakenly compare the whole array to the single string "A", this warning can appear, indicating a mismatch in
the types being compared.

Comparing elements of different types

To resolve this warning, use elements of the same type for comparison. To compare an array to an element of the array, use

the function.

146 / 156

Spreadsheet SpreadsheetResult SelectData (Bank[] banks)

Step

Formula

SelectRatings = flatten(banks bankRatings) [select all having rating == "A"]

Appendix B: Functions Used in OpenL Tablets

This chapter provides a complete list of functions available in OpenL Tablets and includes the following sections:

* Math Functions
® Array Functions
¢ Date Functions

e String Functions
® Special Functions

Math Functions

Function

Description

abs(double a)

Returns the absolute value of a number.

acos(double a)

Returns the arc cosine of a value. The returned angle is in the range 0.0 through
pi.

asin(double a)

Returns the arc sine of a value. The returned angle is in the range -pi/2 through
pi/2.

atan(double a)

Returns the arc tangent of a value; the returned angle is in the range -pi/2
through pi/2.

atan2(double y, double x)

Returns the angle theta from the conversion of rectangular coordinates (x, y) to
polar coordinates (r, theta).

cbrt(double a)

Returns the cube root of a double value.

ceil(double a)

Returns the smallest (closest to negative infinity) value that is greater
than or equal to the argument

and is equal to a mathematical integer.

copySign(double magnitude,
double sign) /
(float magnitude, float sign)

Returns the first floating-point argument with the sign of the second floating-
point argument.

cos(double a)

Returns the trigonometric cosine of an angle.

cosh(double x)

Returns the hyperbolic cosine of a double value.

exp(double a)

Returns Euler's number e raised to the power of a double value.

expm1(double x)

Returns ex -1.

floor(double a)

Returns the largest (closest to positive infinity) double value that is less than or
equal

to the argument and is equal to a mathematical integer.

format(double d)

Formats double value.

format(double d, String fmt)

Formats double value according to Format fmt.

getExponent(double a)

Returns the unbiased exponent used in the representation of a.

147 / 156

Function

Description

getExponent(double x, double y)

Returns sqrt(x2 +y2) without intermediate overflow or underflow.

IEEEremainder(double f1, double
2)

Computes the remainder operation on two arguments as prescribed by the IEEE
754 standard.

isInfinite(number)

Determines whether an input value is infinitely large in magnitude.

isNaN(number) Determines whether an input value is a non-numeric value.
log(double a) Returns the natural logarithm (base e) of a double value.
log10(double a) Returns the base 10 logarithm of a double value.

log1p(double x) Returns the natural logarithm of the sum of the argument and 1.

mod(double number, double
divisor)

Returns the remainder after a number is divided by a divisor.

nextAfter(double start, double
direction) /
(float start, float direction)

Returns the floating-point number adjacent to the first argument in the direction
of the second argument.

pow(double a, double b)

Returns the value of the first argument raised to the power of the second
argument.

quotient(double number, double
divisor)

Returns the quotient from division number by divisor.

random()

Returns a double value with a positive sign, greater than or equal to 0.0 and less
than 1.0.

rint(double a)

Returns the double value that is closest in value to the argument and is equal to
a mathematical integer.

round(double value)

Returns the closest value to the argument, with ties rounding up.

round(double value, int scale, int
roundingMethod)

Returns a number which scale is the specified value, and which unscaled value is
determined

by multiplying or dividing this number’s unscaled value by the appropriate
power of ten to maintain its overall value.

roundStrict(double value)

Returns the closest value to the argument without adding ulp.

scalb(double a, int scaleFactor)

Return a x 2scaleFactor rounded as if performed by a single correctly rounded
floating-point multiply
to a member of the double value set.

signum(double d) / (float f)

Returns the signum function of the argument; zero if the argument is zero, 1.0 if
the argument
is greater than zero, -1.0 if the argument is less than zero.

sin(double a)

Returns the trigonometric sine of an angle.

sinh(double x)

Returns the hyperbolic sine of a double value.

sqrt(double a)

Returns the correctly rounded positive square root of a double value.

tan(double a)

Returns the trigonometric tangent of an angle.

tanh(double x)

Returns the hyperbolic tangent of a double value.

148 /156

Function

Description

toDegrees(double angrad)

Converts an angle measured in radians to an approximately equivalent angle
measured in degrees.

toRadians(double angdeg)

Converts an angle measured in degrees to an approximately equivalent angle
measured in radians.

ulp(double value)

Returns the size of an ulp of the argument.

Array Functions

Function

Description

add(array,element)

Returns a new array that includes the original array plus the newly added element at the end.
Parameters:

array: The array to which the element is to be added.

element: One or more elements to be added, or an array of elements. This is a varargs
parameter, allowing for multiple elements to be listed.
Examples:

add(states, "Texas") - Creates a new array with all elements of states plus "Texas" at the
end.

add(states, "California”, "Nevada", "Oregon") - Creates a new array with all elements of
states plus "California”, "Nevada"“, and "Oregon" added at the end.

add(states, newStates) - Creates a new array with all elements of states plus all elements of
newStates added at the end.

add(array1, array?, ...,
arrayN)

Adds all elements of the provided arrays into a new array.

addAll(array1, array2)

Adds all elements of the given arrays into a new array.

addElement(array,
index, element)

Returns a new array that includes a specific element inserted at a given index within the
original array.
Parameters:

array: The array into which the elements to be inserted.

index: The position in the array where the new elements must be inserted. This index starts
at zero.

element: One or more elements to be inserted, or an array of elements. This is a varargs
parameter, allowing for multiple elements to be listed.
Examples:

addElement(states, 3, "Texas") - Creates a new array with all elements of states plus "Texas"
at the 4th position in the states array.

addElement(states, 2, "California", "Nevada", "Oregon") - Creates a new array with all
elements of states plus "California”, "Nevada", and "Oregon" starting at the 3rd position in
the states array.

addElement(states, 1, newStates) - Creates a new array with all elements of states plus all
elements of newStates array starting at the 2nd position in the states array.

allFalse(Boolean[])

Returns true if all array elements are false.

anyFalse(Boolean[])

Returns true if any array element is false.

allTrue(Boolean]])

Returns true if all array elements are true.

anyTrue(Boolean(])

Returns true if any array element is true.

149 /156

Function

Description

avg(array)

Returns the arithmetic average of the array of number elements.

big(array, int position)

Removes null values from array, sorts an array in descending order and returns the value at
position 'position'.

concatenate(array)

Joins several values in one text string.

contains(array, elem)

Checks if the value is in the given array.
Instead of an array, this function can accept a range or an array of ranges.

indexOf(array([], elem)

Finds the index of the given value in the array.

intersection(String(]
array1, String[] array?2)

Returns a new array containing elements common to the two arrays.

isEmpty(array) Checks if an array is empty or null.

Returns a flatten array with values from arrayN. Returns a single dimension array of elements.
flatten(arrayN) . .

Converts a matrix into a list.

Returns the number of elements in the array. It is more preferable than the array.length
length(array)

syntax.
max(array) Returns the maximal value in the array of numbers.

median(array)

Returns the middle number in a group of supplied numbers. For example,
=MEDIAN(1,2,3,4,5) returns 3.
The result is a floating value.

min(array)

Returns the minimal value in the array of numbers.

noNulls(array)

Checks if the array is non-empty and has only non-empty elements.

product(array values)

Multiplies the numbers from the provided array and returns the product as a number.

remove(array, int
index)

Removes the element at the specified position from the specified array.

removeElement(array,
element)

Removes the first occurrence of the specified element from the specified array.

removeNulls(T]]
array)

Returns a new array without null elements.

slice(array, int
startindexInclusive,
int endIndexExclusive)

Returns a part of the array from startindexInclusive to endindexExclusive.

small(array, int

Removes null values from array, sorts an array in ascending order and returns the value at

position) position 'position’.

Sorts the specified array of values into ascending order, according to the natural ordering of
sort(array) its elements
sum(array) Returns the sum of numbers in the array.

Date Functions

Function

Description

150/ 156

Function

Description

absMonth(Date dt)

Returns the number of months since AD.

absQuarter(Date dt)

Returns the number of quarters since AD as an integer value.

amPm(Date dt)

Returns Am or Pm value for an input Date as a String.

Date(int year, int
month, int date)

Creates a date using input numbers for year, month, and date, for example, Date(2018, 7, 12) ->
12 July 2018 (00:00:00.000).

dateDif(startDate,
endDate, unit)

Calculates the difference between dates in days, months, and years. This function accepts the
following values:

- D Calculates difference in full days.

For example, for dateDif(toDate("2011-02-01"),toDate(*2012-05-01"),"D"), the result is 455
days.

- M Calculates difference in full month.

Note that for dateDif(toDate("2016-08-31"),toDate("2016-09-30"),"M"), the result is 0 because
dateDif

is rounded down by default.

Note: If your business case requires that difference is 1,

use an alternative formula is (Year(date1)-Year(date2))*12+Month(date1)-Month(date2).

- 'Y Calculates difference in full years.
For example, dateDif(toDate("2020-03-04"),toDate("2027-05-01"),"Y"), the result is 7.

- W Calculates difference in full weeks.

- MD Calculates difference in full days excluding months and years.

For example, for dateDif(toDate("2011-02-14"),toDate(*2012-05-14"),"MD"), the result is 0
as 14 is compared to 14.

- YD Calculates difference in full days excluding years.

- YM Calculates difference in full months excluding years.

- MF Calculates difference in month. A fractional result can be returned if the last month is not
completed.

For example, for dateDif(toDate(*2020-03-04"),toDate("2027-05-01"),"MF"), the result is

85.9.

- YF Calculates difference in years.
A fractional result can be returned if the last year is not completed.

- WF Calculates difference in weeks.
A fractional result can be returned if the last week is not completed.

- YMF Calculates difference in month excluding years.
A fractional result can be returned if the last month is not completed.

dateToString(Date dt)

Converts a date to the String. Deprecated, use toString(Date dt) function instead.

151 /156

Function

Description

dateToString(Date dt,
String dateFormat)

Converts a date to the String according dateFormat. Deprecated, use toDate (String str, String
dateFormat) function instead.

dayDiff(Date dt1, Date

Returns the difference in days between endDate and startDate.

dt2)

dayOfMonth(Date dt) Returns the day of month.
dayOfWeek(Date dt) Returns the day of week.
dayOfYear(Date dt) Returns the day of year.

firstDateOfQuarter(int
absQuarter)

Returns the first date of quarter.

hour(Date dt)

Returns the hour.

hourOfDay(Date dt)

Returns the hour of day.

lastDateOfQuarter(int
absQuarter)

Returns the last date of the quarter.

lastDayOfMonth(Date
dt)

Returns the last date of the month.

minute(Date dt)

Returns the minute.

month(Date dt)

Returns the month (1 to 12) of an input date.

monthDiff(Date dt1,
Date dt2)

Return the difference in months before d1 and d2.

quarter(Date dt)

Returns the quarter (0 to 3) of an input date.

second(Date dt)

Returns the second (0-59) of an input date.

toDate(String str)

Converts a string to a date.

Date in str must be represented as text in the supported by OpenlL format as described in
Representing Date Values.

For example toDate("1980-07-12") -> 12 July 1980 (00:00:00.000).

toDate(String str,
String dateFormat)

Converts a string into the date of the specified format.
For date formats, see
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html.

toString(Date dt)

Converts a date to the string in MM/dd/yyyy format.

toString(Date dft,
String dateFormat)

Converts a date to the string of the specified format.
For date formats, see

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html.

weekDiff(Date dt1,
Date dt2)

Returns the difference in weeks between endDate and startDate.

weekOfMonth(Date
dt)

Returns the week of the month within which that date is.

weekOfYear(Date dt)

Returns the week of the year on which that date falls.

152 /156

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html

Function Description

yearDiff(Date dt1,

Returns the difference in years between endDate and startDate.
Date dt2)

Returns the year for an input date. For example, for the 2/1/2011 input, the function returns
year(Date dt)

2011.
String Functions
Function Description
concatenate(str1, str2,...) Joins several values in one text string.

contains(String str, char e . .
Checks if String contains a search character, handling null.
searchChar)

contains(String str, String)))) .
Checks if String contains a search String, handling null.
searchStr)

containsAny(String str, char(])))))
hars) Checks if the String contains any character in the given set of characters.
chars

containsAny(String str, String .) .))
Checks if the String contains any character in the given set of characters.
searchChars)

endsWith(String str, String suffix) | Check if a String ends with a specified suffix.

isEmpty(String str) Checks if a String is empty ("") or null.
isNotEmpty() Verifies if a String is non-empty.
length(String str) Returns the number of characters in a string.

Used to check whether a string value matches the predefined pattern, such as
like(String str, String pattern) emails, phone numbers, and zip codes.
For more information, see Pattern-Matching Function.

lowerCase(String str) Converts a String to lower case.

removeEnd(String str, String Removes a substring only if it is at the end of a source string, otherwise returns
remove) the source string.

removeStart(String str, String Removes a substring only if it is at the beginning of a source string, otherwise
remove) returns the source string.

replace(String str, String
searchString, Replaces all occurrences of a String within another String.
String replacement)

replace(String str, String . . L . .
. Replaces a String with another String inside a larger String, for the first max values
searchString, .
)) of the search String.
String replacement, int max)

startsWith(String str, String

! Check if a String starts with a specified prefix.
prefix)

. . . Gets a substring from the specified String.
substring(String str, int) o
. A negative start position can be used to start n characters from the end of the
beginindex) Stri

ring.

153 /156

Function

Description

substring(String str, int
beginindex, int endIndex)

Gets a substring from the specified String.
A negative start position can be used to start or end n characters from the end of
the String.

textJoin (String separator,
Object[])

Combines non-empty values from multiple ranges and strings and includes a
separator between each two values
combined into single text. Objects can be of any type, such as string, double,

integer, and custom type.

textSplit (String separator,
String text)

Splits the input text into a non-empty valued array of strings using the separator.

toBoolean(a)

Converts a string to Boolean.

toDouble(String)

uon

Converts a string of numeric characters to the Double. The dot ".” symbol must be
used as a decimal separator.

tolnteger(String)

Converts a string of numeric characters to the Integer value.

toString(Number num)

Converts a number into a string with maximum number of 3 digits after the
decimal point. Trailing zeroes are omitted.
The default format is #.###.

154 /156

Function

Description

toString(Number num, String
format)

Converts a number into a string according to the specified format as follows:
0
Used as a digit.

#

Used as a digit. Meaningless zeroes are omitted, for example, 012.300 -> 12.3.

Used as a decimal separator or monetary decimal separator.

Used as a minus sign.

]

Separates items in a group.

E
Separates the mantissa and exponent in a scientific notation.
It does not need to be quoted in a prefix or suffix.

]

Separates positive and negative subpatterns.

%
Used to multiply the value by 100 and display it as percentage.

%0

Used to multiply the value by 1000 and display it as a milli-value.

I

Used to quote special characters in a prefix or suffix.
Example: "'#'#" formats 123 to "#123".
To create a single quote, use two symbols in a row: "# o"clock".

trim(String str)

Removes whitespace characters from both ends of a string.

upperCase(String str)

Converts a string to upper case.

Special Functions

Function

Description

copy(object)

Copies an object for independent modification from the original object.
This functionality is implemented to support variations from rules.

error(String "msg”)

Displays the error message.

error(String code, String message)

Returns a custom error with custom error code, both defined as arguments, in
the HTTP response,
OpenlL Studio Ul, and in the logs.

155/ 156

Function

Description

fieldname(object)

Returns a value from the specified field of the object
is the same as ;
returns the ages list of all drivers.

format(pattern, parameters)

Returns values according to the specified pattern.

Example:

format("The user {1} has policy number {0}","P2289818293","Alex")
returns

"The user Alex has policy number P2289818293".

getValues(MyVocabularyDatatype)

Returns an array of values from the MyVocabularyDatatype vocabulary data type.
Returns MyVocabularyDatatypel] .

instanceOf(Object,
className.class)

Returns a Boolean value defining if the Object is of the specified class. This
function is deprecated.

msg(String code, Object... params)

Reads the localization message bundles in the i18n format.
For more information on localization, see Project Localization.

new Datatype(value of attribute1,
value of attribute2)

or

Datatype(value of attribute1, value
of attribute?)

or

Datatype(attribute1 = value of
attribute1,

attribute2 = value of attribute2)
or

new Datatype(attribute1 = value
of attributeT,

attribute2 = value of attribute?)

Used to create an instance of the datatype.

Values must be comma-separated and listed in the same order in which the
appropriate fields are defined

in the datatype.

The word new can be omitted. Alternatively, a form with parameter enumeration
can be used.

Parameters can be listed in any order and it is not required to specify all the
parameters.

Note: When there is a datatype and method, DT or Spr, with the same name and
number of parameters,

method call and constructor call with the omitted "new" keyword have exactly
the same syntax.

In this case, the method call is selected.

Examples:

*%

new Datatype][] {}

Used to create a data array.
The number in the square brackets [] denotes the size of the array, for example,

If no number is provided, an empty array is created, for example,

Values in the braces {} define the values of the appropriate array elements.
Example:

toString(value)

Converts value to the string.

Release 5.27

OpenL Tablets Documentation is licensed under a Creative Commons Attribution 3.0 United

States License.

156 / 156

